
Qeditas: A Formal Library as a Bitcoin Spin-Off

Bill White∗

Draft of May 29, 2016

Abstract

Formalization of mathematical theories is a time consuming process

for which there is currently little reward. We describe how block chain

technology can be used to support the formalization of mathematics by

encouraging and rewarding useful work while discouraging repeating the

work of others. The block chain will contain a record of definitions made

and propositions proven. In addition the block chain can be used as a

registry to record the first participant to make a definition or prove a

theorem as the owner of the object or proposition as intellectual property.

Future users may be required to buy rights to make use of the object or

proposition. Purchasing of these rights can be avoided by repeating the

content, but at the expense of larger documents and increased fees to the

creators of blocks.

1 Introduction

Qeditas is a project to apply block chain technology to support the construction
of a library of formalized mathematics. Motivations for building such a library
were spelled out in an anonymously published document in 1994 with the title
The QED Manifesto [3]. In order to construct such a library there must be a
clear record of which definitions have been made and which theorems have been
proven. In addition the record may include unproven conjectures of interest.
Qeditas will use a block chain to secure such a record in a decentralized manner.
In addition a block chain can be used to reward those who make useful definitions
and prove useful theorems.

Bitcoin [32] introduced the notion of a block chain to have a secure dis-
tributed record of currency transactions. The Ethereum project [45] uses a
block chain to provide a distributed platform for computation. Qeditas will
use a block chain to provide a distributed platform for deduction. Qeditas will
also include an internal currency whose initial distribution will be based on a
snapshot of the Bitcoin block chain. In other words Qeditas will be a Bitcoin
spin-off [38].

∗Email: billwhite@protonmail.com BTC: 12pbhpqEg7cjaCLLcvdhJhBWGUQWkRK3zS

1

The task of building a formal mathematical library is enormous. Wiedijk
estimated the work to formalize the mathematics that mathematicians “take
for granted” as requiring 140 man-years [44]. Achieving such a goal will require
the work of many independent people. The system in which the formaliza-
tion takes place must allow people submit definitions, conjectures and theorems
(with proofs) independently. Their contributions to the library should be ap-
propriately rewarded and other users should be encouraged to build on previous
work.

For the most part the work of formally proving theorems has been limited
to graduate students who formalize certain areas of mathematics or computer
science as part of obtaining their degrees. This is sometimes done as part of
a larger project. One example of such a large project is the recently com-
pleted Flyspeck project [23] to formalize Hales’ proof of the Kepler conjecture.
Gonthier’s work formalizing theorems about the classification of finite simple
groups [20] provides another prominent example.

In the academic world wealth is largely measured in publications, and aca-
demics who create formalizations receive their reward in the form of the resulting
publications. Outside of academia there is currently little reward for doing such
work. To some degree this is surprising since theorem proving can be used to
ensure properties of programs and protocols.

In Qeditas there will be two ways to be rewarded.

1. Users will be able to place bounties on conjectures and the bounties can be
collected by the publisher of the first document resolving the conjecture.

2. If a user is the first to define an object or prove a proposition, then the user
will be able to claim ownership of the object or proposition. In order for
future users to make use of the definition or theorem without repeating the
content, they may (at the discretion of the owner) be required to purchase
corresponding rights.

The second point means that mathematical objects and propositions will be-
come essentially a form of decentralized intellectual property (within the system)
and the purchasing and usage of rights will be enforced by the network. This
is similar to the requirement that academics include appropriate references to
previous work in their publications. Note, however, that in the current aca-
demic world many publications have copyright restrictions and are often behind
paywalls. In contrast all documents published in the Qeditas block chain will
be freely available.

In this white paper we will give a high level description of the Qeditas project.
The code is still being written and details are subject to change.

In Section 2 we describe the Qeditas currency units including the plan for
an initial distribution taken from a snapshot of the Bitcoin block chain. The
remaining currency units will be given as block rewards. The current plan is to
use a lightweight block chain [8, 43] so that each member of the network need
not permanently store, for example, every formal document. The consensus
mechanism will likely be proof of stake [14] in some combination with proof of

2

Basic Unit Corresponding
Full Name Short Name Factor Bitcoin Units
Cantor (Cantors) cant (cants) 1 0.001 satoshis
Frege (Freges) freg (fregs) 102 0.1 satoshis
Church (Churches) church (churches) 105 1 microbit
Zermelo (Zermelos) zerm (zerms) 108 1 millibit
Fraenkel (Fraenkels) fraenk (fraenks) 1011 1 bitcoin
Grothendieck (Grothendiecks) groth (groths) 1014 1000 bitcoins

Table 1: Qeditas currency units

storage [31]. These choices are discussed in Section 3. We use a small example
to show how formal documents can be specified and published into the block
chain in Section 4. In Section 5 we extend the small example to demonstrate
how ownership of objects and propositions can be recorded into the block chain.
In Section 6 we describe how bounties can be placed on conjectures and later
collected by someone who proves the conjecture (or possibly its negation). Cur-
rency units, ownership, rights, and bounties can generally be described as assets
which are held at addresses. This is described in Section 7. All of the concepts
above are generic and could be instantiated to many different theorem provers.
In Section 8 we list some pros and cons of a few theorem provers which could be
used as the underlying engine for Qeditas, leaving the definite choice for later.

2 Currency

One of the oft-repeated complaints about Bitcoin is that the same name was
given to both the network and the currency units. This is remedied in print by
writing “Bitcoin” for the network and “bitcoin” for the currency unit. Actually,
the basic currency unit is called a “satoshi” and a bitcoin consists of 100 million
satoshis. It is also possible that subdivisions of satoshis will be included at some
point in the future.

As the value of bitcoin has increased, community members have engaged in
long debates about the possible names to give to units between satoshis and
bitcoins. In an attempt to preempt such debates in Qeditas, we give names
for the units here. We do not use the term “qeditas” for any of the units.
Instead we derive the names from the names of some mathematicians who have
contributed to the understanding of the foundations of mathematics. The names
are listed in Table 1 and the pronounciations are intended to be the same as the
pronounciations of the names of the corresponding mathematicians. The names
are given in full form (both singular and plural) and in a short abbreviated
form (both singular and plural). For the remainder of the paper we will use the
abbreviated names.

The intention is that one fraenk corresponds directly to one bitcoin (in terms
of units, not value), and so the number of fraenks in Qeditas is capped at 21
million. The first (approximately) 14 million (23) will be distributed by taking a

3

snapshot of the first 350,000 blocks of the Bitcoin block chain.1 The remaining
7 million will be distributed as block rewards with the same schedule Bitcoin is
using (starting from block 350,000). That is, the block reward will begin with
25 fraenks for the first 70,000 blocks and will then halve to 12.5 fraenks. After
block 70,000 the block reward will halve each 210,000 blocks. A block time
of 10 minutes will be targetted, so that the number of fraenks should always
be approximately the same as the number of bitcoins. Note that since there
are finer units in Qeditas than Bitcoin, very small Qeditas block rewards will
continue after the Bitcoin block rewards have stopped.

Arguments in favor of such a snapshot distribution can be found in the “spin-
off” thread begun by Peter R [38].2 One can view the Bitcoin block chain as
recording an efficient distribution of wealth in a voluntary environment. Bitcoin
was sufficiently well-known by 2015 that each individual had a chance to make
an independent judgement about the idea. Consequently each person at that
point held the amount of bitcoins that reflected their own judgment.

Having 2
3 of the total Qeditas currency supply in the initial distribution may

lead to an unhealthy level of uncertainty. It is likely that a significant percentage
of the initial distribution will never be claimed, either due to lack of interest
or due to lost private keys. One solution to this problem (also discussed in the
spin-off thread [38]) is to have a claim window. That is, there would be a block
height after which currency units from the initial distribution could no longer
be claimed. An argument in favor of such a claim window is that it removes
the uncertainty about the long-term supply. An argument against having such
a claim window is that it is redistributive and punishes bitcoin holders who did
not become aware of the spin-off in time.

The current plan in Qeditas is to have an initial claim window of roughly
5 years. During these 5 years, for each satoshi the bitcoin address had, the
controller of the corresponding private key will be able to claim 1000 cants from
the initial Qeditas distribution, held at the corresponding Qeditas address. After
these 5 years, there will be new claim windows coinciding with the halving of
the block rewards. In particular, each time the block reward halves (roughly
every 4 years) the value of the unclaimed initial distribution will also halve.
For example, a bitcoin address that held 1 satoshi at the time of the snapshot,
would only be able to claim 500 cants during this second claim window. During
the third claim window (roughly years 9 through 13) the corresponding initial
distribution (if still unclaimed) would be worth 250 cants. As a consequence,
even a claim corresponding to a single satoshi in the snapshot will be able to be
claimed for at least one cant for roughly the first 40 years of the network.3

1To be precise, the snapshot will include all pay-to-public-key-hash addresses, including
those derived from pay-to-public-key outputs. The snapshot will also include native multisig
outputs. In addition, all pay-to-script-hash outputs will be included, but we cannot guarantee
the Qeditas script interpreter is 100% compatible with the script interpreter of Bitcoin. A
preliminary script interpreter has been written and tested on already spent pay-to-script-hash
outputs in the Bitcoin block chain and it succeeds in over 99.8% of cases.

2While the cited thread contains the primary discussion on the topic, the idea seems to be
older. See for example the earlier thread begun by go1111111 [18].

3Trent Russell suggested this idea for halving the value of unclaimed currency from the

4

3 Lightweight Ledger

Qeditas will use a lightweight ledger in the sense described in [43]. The idea is
similar to the mini-blockchain scheme implemented in the cryptocurrency Cryp-
tonite [8] as well as to the intended use of Merkle-Patricia trees in Ethereum [45].
The state of the ledger will be represented by a compact form of a trie combined
with a Merkle structure (a Merkle-Patricia tree up to some details). The full trie
allows one to look up the assets held by an address. These assets may include
currency units but may also include formal documents, ownership information,
rights and bounties.

We distinguish between assets held by an address and assets being controlled
by addresses. An asset a is held by an address α if a can be found in the trie
at address α. The asset itself contains obligations (see [43]) indicating who can
spend the asset. The obligations allow for an address to hold an asset without
being able to spend the asset.

The two most popular kinds of consensus mechanisms used by cryptocur-
rencies are proof of work and proof of stake. Proof of work (PoW) was first
described by Back [4] and is used by Bitcoin. Proof of stake (PoS) was intro-
duced by King and Nadal [28], and first implemented (as a proof of work/proof of
stake hybrid) in Peercoin. Another consensus mechanism, proof of retrievability
(PoR), described by Miller, et. al., is designed to support data preservation [31].

Since Qeditas is intended to support a library, some form of PoR seems to be
a good choice. On the other hand, the amount of data being secured by Qeditas
is likely to be relatively small (especially at first) and it is not clear that PoR is
appropriate in this case. Conceivably, PoR could be used to ensure storage of
the syntactic terms which hash to give addresses of objects and possibly storage
of proofs of theorems. While the consensus mechanism is not yet fixed, it is
likely to be some combination of PoS and PoR.4

The original PoS mechanism used a notion of coin age. When coin age is
coupled with a block reward proportional to the stake, the incentive to con-
stantly stake (and thereby support the security of the network) is decreased.
The Qeditas network will not suffer from this problem since it will have a fixed
block reward independent of the stake of the forger of the block. This idea has
been described earlier as “proof of stake definite” [14]. Qeditas may use a notion
of coin age, but since there is a fixed block reward potential stakers maximize
their reward by keeping their nodes online as much as possible.

The currency units held by an address α are part of the stake of that address.
Accordingly, if an address holds some currency units, then the private key for
α will be able to forge new blocks in the block chain. In order to check α holds
the alleged stake it is sufficient to look at an approximation of the current state
showing the stake is among the assets held by α. The approximation need not
include information about assets held by any other address. More details can

initial distribution after noting problems caused by similar issues in the case of the Clams
cryptocurrency.

4The current design of Qeditas does not make use of erasure codes when storing data, and
so it would likely make use of “Proof of Storage” instead of PoR.

5

be found in [43].
Note that if β controls some currency units, then β can allow the asset to

be held by α so that α can use them to forge blocks. This would allow a staker
to keep the keys for spending offline while having the staking keys online. It
would also allow for a non-staker (controlling β) to “loan” their currency units
to a staker (controlling α). In return α might pay some of the block rewards
back to β. Since β still controls the asset, the owner of the private key for β

can spend the asset even though it is held by α. (Though the obligation may
contain a block height before which the asset cannot be spent.)

There are strong arguments that PoS cannot provide the same level of dis-
tributed consensus as PoW [37]. One reason is that if someone had stake in the
currency at one time, then this previously owned stake could, in principle, be
used to create a fork of the block chain starting from that earlier time. In prac-
tice PoS cryptocurrency can avoid a long range attack of this kind by preventing
long reorganizations. For example, the cryptocurrency Nxt [13] disallows reor-
ganization beyond 720 blocks. The cost of this solution is that if someone new
enters the network they may need a way, outside the network itself, to deter-
mine the “correct” chain. Buterin calls such a criteria “weakly subjective” in
contrast to the “objective” criteria used by Bitcoin [9]. Short range attacks
are still possible, though simulations by Consensus Research show them to be
unlikely even in the face of participants signing competing chains [10, 2, 39].

The initial distribution may provide a protection against certain kinds of
attacks. In the first place, it would be very difficult for an individual or group
to obtain 50% of the currency units since this would require obtaining the private
keys corresponding to at least 3.5 million bitcoins as of block height 350,000.
On the other hand, a 51% attack on a proof of stake coin only requires having
more than 50% of the actively staking coins. There is a threat that if a single
wealthy bitcoin holder decided to attack the Qeditas network before many others
are participating, the network could be strangled in its cradle. The economic
rationality of such an attack is questionable, since they would be doing work to
destroy a block chain that would add to their wealth if left alone. Nevertheless,
the threat exists. The hope is that the wide initial distribution will make it
likely that for each participant with a certain amount of the distribution there
will be others with a similar amount.

4 Documents

Some examples of formal mathematical libraries include the Mizar Mathematical
Library [40], the Archive of Formal Proofs supported by Isabelle-HOL [33] and
the Mathematical Components library of ssreflect [21]. In each case the library
is made up of documents. Each of these documents extends the mathematical
content of the library by including mathematical items, mainly definitions and
theorems. The organization of these libraries tends to be handled by experts
who have a familiarity with the current contents of the library. These experts
can determine if the content is new and whether the document conforms to the

6

Definition 1. Let R be a binary relation. The binary relation R−1 is
defined such that R−1(x, y) holds if R(x, y) holds.
Definition 2. A binary relation R is symmetric if R(y, x) holds whenever
R(x, y) holds.
Theorem 1. Let R be a binary relation. If R is symmetric, then R−1 is
also symmetric.

Proof. Assume R is symmetric and R−1(x, y) holds. By Definition 1, R(y, x)
holds. By symmetry of R and Definition 2, R(x, y) holds. By the Definition
1 again, R−1(y, x) holds.

Figure 1: Mathematical Content of Relns

expectations of the library.
Since Qeditas will be decentralized, there will be no “expert” to filter out

submissions. The protocol itself must ensure the submission meets the necessary
criteria. In this section we walk through a small example of how a document
might be created and published.

Suppose a user creates a document Relns which defines the converse of a
relation, defines when a binary relation is symmetric and proves a theorem
that the converse of a relation is symmetric if the relation is symmetric. The
particular syntax and format of such a document depends on the system used
to check the proofs. For now, we can remain system-independent by using
informal mathematical language. The mathematical content of Relns is shown
in Figure 1.

Note that the document contains a proof of the theorem. There are a variety
of representations for proofs, but a fundamental requirement is that it must be
easy for a proof checker to determine whether or not the proof is correct. We
return to this issue in Section 8.

The first criteria for the document to be accepted by the network for publica-
tion is that it is formally correct. This ensures that only correct definitions and
theorems will be included in the library. There are a number of other criteria
which will be discussed in the remainder of the paper. For this section, let us
consider how plagiarism is avoided.

Suppose the author of Relns, Alice, controls an address α. Suppose Relns is
signed with the address α and submitted to the Qeditas network for publication.
Another network participant, Bob, controlling an address β, could easily remove
Alice’s signature and replace it with his own. If Bob’s version were confirmed
before Alice’s, then Alice would lose credit for having done the work.

A solution to this problem is to enforce the following protocol.

1. The author chooses a salt and includes it in the document.

2. The author computes a hash of the signed salted document and publishes
it as an intention.

7

3. After the intention is sufficiently confirmed, the author releases the signed
salted document to be published.

The network will only allow a document to be confirmed if it has a sufficiently
confirmed intention. Now for an attacker to take credit for another document,
the attacker would need to publish a new intention, wait for enough confir-
mations, and then attempt to publish the plagiarized document all before the
original author’s document is confirmed.

Publishing an intention and a document will likely require fees, and the fees
will likely depend on the size of the document. This gives the first in-system
use of the currency. We will see other in-system uses of the currency in the next
sections.

5 Ownership and Rights

In this section we consider the notions of ownership of objects and proposi-
tions and rights of use. We use the example document Relns with the contents
described in Figure 1 to guide the discussion.

In a document a formal definition declares a certain name to be an abbrevi-
ation for a certain syntactic term. Likewise, a formal theorem declares a name
to be a reference to the fact that a certain syntactic term (representing a propo-
sition) is provable (with the proof following the declaration). These syntactic
terms can be hashed in order to assign a unique address corresponding for each
term.

Consider the first definition in Relns. This defines an operation −−1 on
relations. As a λ-term [12] the definition can be written as

λRλxλy.R(y, x).

This definition can then be converted to a nameless (de Bruijn) representa-
tion [16]

λ λ λ .2(0, 1).

This nameless version can be serialized and hashed to given an address. Let δ1
be the address corresponding to the first definition. Likewise, we can compute
an address δ2 corresponding to the second definition and δ3 corresponding to
the proposition of the theorem.

Suppose Alice (the author of Relns) is the first to make both of the defini-
tions, the first to mention the proposition of the theorem and the first to prove
the theorem. In this case α (the address of Alice) will be marked as the owner
of the objects δ1 and δ2 and the owner of both the object and proposition δ3
when the document is published (and confirmed). This ownership information
is held as a kind of asset at the addresses δ1, δ2 and δ3 and will include a royalty
requirement. The royalty requirement is used to determine under what condi-
tions others may use the object or proposition. The owner may either allow
everyone to freely use the item, may allow no one to use the item, or may allow
others to purchase rights for each use. Ownership can also be transfered to a

8

Definition 1. Let R be a binary relation. The binary relation R−1 is
defined such that R−1(x, y) holds if R(x, y) holds.
Definition 2. A binary relation R is symmetric if R(y, x) holds whenever
R(x, y) holds.
Theorem 1. Let R be a binary relation. If R is symmetric, then R−1 is
also symmetric.

Proof. Assume R is symmetric and R−1(x, y) holds. By Definition 1, R(y, x)
holds. By symmetry of R and Definition 2, R(x, y) holds. By the Definition
1 again, R−1(y, x) holds.

Theorem 2. Let R be a binary relation. If R is symmetric, then (R−1)−1

is also symmetric.

Proof. Assume R is symmetric. Applying Theorem 1 with R we know R−1

is symmetric. Applying Theorem 1 again, this time with R−1, we know
(R−1)−1 is symmetric.

Figure 2: Mathematical Content of Relns2v1

different address using the private key for α. The royalty information can be
changed by the current owner.

Let us suppose that Alice publishes the document Relns and assigns own-
ership of δ1, δ2 and δ3 to her address α. Suppose Alice allows δ1 to be freely
used, does not allow the use of δ2 at all, and requires a payment of 3 zerms for
each right to use δ3.

Now suppose Bob, the controller of address β, wants to author a document
extending Alice’s work by proving that (R−1)−1 is symmetric if R is symmetric.
Bob has a number of options for doing this. We will discuss three options as
documents Relns2v1, Relns2v2 and Relns2v3.

In Relns2v1 (see Figure 2) Bob copies Alice’s work and adds one new theo-
rem. The new theorem (Theorem 2) is easily proven using Alice’s theorem twice.
Theorem 2 is new and will have a corresponding address δ4 which currently has
no owner.

Bob can publish Relns2v1 signed using the private key for his address β.
The first three items already have an owner, Alice, and she will remain the
owner of these three items. The address β for Bob will be assigned the owner
of the new item δ4.

Simply repeating Alice’s work is not the best way to import previous work.
In this case as in many others it would be a superior choice to only record the
parts of the work that are needed. For this reason suppose Bob is unsatisfied
and does not publish Relns2v1. Bob could examine his proof of Theorem 2 and
recognize that he did not need the actual definitions of −−1 or the property of
being symmetric, but only needed the fact that the proposition of Theorem 1

9

Object 1. (−)−1 is the object with address δ1.
Object 2. symmetric is the object with address δ2.
Known 1. Let R be a binary relation. If R is symmetric, then R−1 is also
symmetric.
Theorem 2. Let R be a binary relation. If R is symmetric, then (R−1)−1

is also symmetric.

Proof. Assume R is symmetric. Applying Known 1 with R we know R−1 is
symmetric. Applying Known 1 again, this time with R−1, we know (R−1)−1

is symmetric.

Figure 3: Mathematical Content of Relns2v2

has been proven. Armed with this information Bob can create Relns2v2 (see
Figure 3) by omitting the definitions and first proof.

The correctness of the proof of Theorem 2 in Relns2v2 can still be checked.
More information is needed to ensure that there really are objects with addresses
δ1 and δ2. This can be verified by looking up δ1 and δ2 in the trie. Assuming
they are previously defined objects, the information will be there. Furthermore,
the system must verify that the proposition in Known 1 has been previously
proven. This can be verified by computing the address corresponding to the
proposition, δ3, and then looking up the relevant information in the trie at this
address.

The document Relns2v2 is shorter than Relns2v1. Consequently it should
be less expensive (in terms of fees) to publish it. In general fees are expected to
encourage succinctness.

However, the network will not allow Bob to publish Relns2v2. In addition
to checking δ1 and δ2 are objects and δ3 is a known proposition, the permission
to make use of them must be determined. Alice has allowed free use of δ1, but
Alice has not allowed use of δ2 at all. In addition, Alice requires the purchase
of rights to use δ3. At the moment, Bob has no such rights.

Armed with this further information, Bob purchases the rights to use δ3
twice. He can do this by creating a transaction with outputs sending 6 zerms
to α (the owner of δ3) and sending 2 δ3-rights to himself. Note that Alice
need not be involved in this transaction. In the future Alice may change the
royalty requirements for δ3, but this will not affect Bob’s right to use δ3 twice.
Purchasing such rights are the second in-system use of the currency.

Bob then creates a third document Relns2v3 (see Figure 4). In this case Bob
avoids the fact that Alice does not allow use of δ2 by simply repeating the work
of defining the property of being symmetric. Bob can then publish an intention
to publish Relns2v3 and later publish Relns2v3. The transaction publishing
Relns2v3 will spend the two rights purchased above, consuming them.

In the end the previous work that is repeated in vs. imported into a docu-
ment will be (at least partially) economically determined based on fees (relative

10

Object 1. (−)−1 is the object with address δ1.
Definition 2. A binary relation R is symmetric if R(y, x) holds whenever
R(x, y) holds.
Known 1. Let R be a binary relation. If R is symmetric, then R−1 is also
symmetric.
Theorem 2. Let R be a binary relation. If R is symmetric, then (R−1)−1

is also symmetric.

Proof. Assume R is symmetric. Applying Known 1 with R we know R−1 is
symmetric. Applying Known 1 again, this time with R−1, we know (R−1)−1

is symmetric.

Figure 4: Mathematical Content of Relns2v3

to the size of documents) and royalty requirements. If the owners of items deter-
mine new documents are opting to repeat work and pay higher fees, then these
owners are likely to reduce the royalty requirements. However, as developments
become increasingly complicated, repeating work becomes less feasible. The
reason is simple: to repeat a definition or a proof, one will generally need to
include other dependencies. In the most extreme case, to avoid all dependen-
cies a document can include every definition and proof all the way down to the
foundation.

6 Bounties

We next consider bounties on conjectures. This gives a third in-system use of the
currency and allows users to guide the development the library. A document may
include conjectures (unproven propositions) and include a bounty in the form
of currency units. The bounty will be automatically paid out to the publisher
of a document resolving the conjecture. By resolving we mean either proving
the conjecture or proving its negation.

A similar notion of bounties for bitcoin is available at Sakaguchi’s website
proofmarket.org [41]. At proofmarket.org there is a list of Coq [29] and
Agda [34] propositions with bitcoin bounties. These can be collected by submit-
ting formal proofs to the website. If the proofs are checked by the corresponding
system to be correct, then the bounty is paid out. The bounty mechanism at
proofmarket.org is centralized and carries counterparty risk.

Qeditas will handle bounties in a decentralized manner as follows. Suppose
δ is the address of the syntactic term specifying a conjecture. All bounties will
be held (as bounties, not currency) at address δ. Suppose Alice, with address
α, publishes a document which contains a proof of the proposition. As a result
of this publication, α will be entered as the owner of δ (as a proposition). The
owner of a proposition will always be allowed to spend bounties held at the

11

address back into currency units (to any address). To handle the case when
Alice proves the negation of the conjecture, we say the owners of propositions
will also be allowed to spend bounties held at the negation of propositions back
into currency units.

Note that it is possible for a proposition to be independent – meaning neither
the proposition nor its negation is provable. Using currency units to place
bounties on independent propositions essentially burns the currency.

The collection of bounties seems to have a “winner takes all” quality. How-
ever, as the conjectures become increasingly complicated, it seems likely that
the document which resolves the conjecture is built from previous work. In
practice, we assume the creators of this previous work required royalties, and
they will be rewarded by the purchase of rights instead of the bounty. This
means bounties can indirectly encourage users to publish intermediate results
intended to build towards a solution to a conjecture with a bounty.

7 Assets

In previous sections we have described currency units, intentions, documents,
ownership, rights and bounties. We combine these under the general notion of
a preasset. A preasset can be combined with other information to give an asset.
Here we mostly follow the presentation in [43], with some modifications.

A preasset is one of the following:

• a currency unit (64-bit number giving the number of cants),

• a bounty on a conjecture (with a 64-bit number giving the number of
currency units),

• a deed for an object (with the address of the owner and an optional 64-bit
number indicating the cost of rights to use it as an object),

• a deed for a proposition (with the address of the owner and an optional 64-
bit number indicating the cost of rights to use it as a known proposition),

• a deed for the negation of a proposition (useful only for collecting bounties
when a conjecture is resolved in the negative),

• a right to use an object (with the address of the object and the number
of times it may be used as an object),

• a right to use a proposition (with the address of the proposition and the
number of times it may be used as a known proposition),

• a marker to indicate the intention to reveal and publish a document or

• a published document (arbitrary, but checked to ensure correctness, in-
tention and appropriate rights).

12

An obligation ω is a triple (α, n, r) where α is an address, n is a block height
and r is a boolean. The address α is either a pay-to-public-key-hash or pay-to-
script-hash address and gives the signature required to spend the corresponding
asset. The block height n gives the earliest block height at which the corre-
sponding asset can be spent. The boolean r indicates if the corresponding asset
is a reward from staking. Rewards are subject to extra conditions, including
the possibility of forfeiture in case double signing on two short forks is detected.

An asset is a triple (h, b, ω, u) where h is a unique identifier of the asset (in
practice, a hash value), b is a block height, ω is an obligation, and u is a preasset.
The obligation ω may be omitted, in which case it is treated as (α, 0, false)
where α is the address where the asset is held. The block height b is the birthday
of the asset, and is the block height at which the asset entered the ledger tree.
Initially distributed assets will have birthday 0. The first block of the Qeditas
block chain will have height 1, and assets created in this first block will have
birthday 1.

If b > 0 and u is a currency preasset with v units, the value of the as-
set (h, b, ω, u) is v cants. We consider the case where b = 0 special, as these
are assets from the initial distribution. As discussed in Section 2 the value of
unclaimed (unspent) assets from the initial distribution will halve over time.
In particular, if u is a currency preasset with v units, then value of the asset
(h, 0, ω, u) at block height n is (the floor of) v

2f(n) where f(n) = 0 if n ≤ 280000

and f(n) = n−70000
210000 for n > 280000. If n ≥ 11410000 (which should be after

roughly 200 years), all the assets from the initial distribution will have value 0.
The state of the system can be representated as a function taking addresses

to lists of assets. Such a state can be represented using tries (similar to Merkle
Patricia trees) as described in [43]. One can use the same representation to keep
up with only the portions of the state relevant to the node in question.

8 Theorem Provers and Proof Checkers

In this section we discuss what kind of theorem prover or proof checker is ap-
propriate for Qeditas. We begin by distinguishing between theorem provers and
proof checkers. A theorem prover is a system in which one constructs proofs,
often with varying degrees of automated assistance. (Given this role, such a sys-
tem is sometimes called a proof assistant.) A proof checker is a system which
takes a preexisting proof and simply checks that it is correct. For Qeditas the
vital ingredient is a proof checker. Each time a document is published each node
will need to use the proof checker to ensure its correctness. For the project to
be successful, there should also be (at least one) theorem prover in which users
can create documents and construct proofs.

For concrete examples, we can contrast two early groundbreaking systems:
AUTOMATH [15, 17] and Mizar [40].

AUTOMATH was the first proof checker. The user would give definitions in
full detail. Each of the definitions would have a declared type and the system
would check that the given term has the given type. Some of the types would

13

correspond to propositions and the terms would correspond to proofs, giving
a first implementation of what is now known as the Curry-Howard-de Bruijn
correspondence [15, 17, 25]. The AUTOMATH project is no longer active.

Mizar was an early example of a theorem prover (dating back to the 1970s)
and is still in use today.5 Mizar is the only widely used system based on set
theory and provides support for some set theoretic notation similar to that
used by traditional mathematicians. The proofs are given in a declarative and
(relatively) readable style. The foundation of Mizar is essentially first-order
Tarski-Grothendieck which is known to be consistent assuming the existence of
certain large cardinals. Mizar has been used to build the Mizar Mathematical
Library which comprises an impressive collection of mathematics.

What we require for Qeditas is a proof checker (like AUTOMATH) with
a reasonably small “trusted” code base, and a theorem prover which can be
used to construct the proofs to be checked. As long as the underlying logic
of a theorem prover is clearly defined, it should be easy enough to write a
small proof checker independent of the theorem prover. If the theorem prover
follows the Curry-Howard-de Bruijn correspondence, then it should be possible
to “compile” proofs constructed with the system’s assistance into proof terms
to be independently checked.

Many popular theorem provers today follow a different scheme: the LCF
approach. In this alternative, abstraction in the meta-language is used to guar-
antee correctness. While it seems to be feasible to produce different proof rep-
resentations (e.g., proof terms) by translating from LCF style provers, it is
not as simple as one might hope in practice [26, 27]. Theorem provers in the
LCF style include Isabelle-HOL [33] and those in the HOL family [22] such as
HOL-light [24].

A well-known theorem prover based on Curry-Howard-de Bruijn is Coq [29,
5, 11, 36] and Coq’s ssreflect variant [21]. Coq is a widely used and well de-
veloped system, even winning the 2013 ACM Software System award. Ssreflect
was used to formally prove both the four color theorem [19] and later the Odd
Order Theorem [20]. Coq has also been applied to theories directly related to
cryptocurrencies [30, 1, 2, 42, 43]. There is clear evidence that it is possible
to formalize serious mathematics in Coq and ssreflect. Coq supports the con-
struction of proofs with some automation, but always compiles to a proof term
checkable by a kernel. This would seem to make Coq (or ssreflect) the clear
choice to use with Qeditas.

On the other hand, there are aspects of Coq which are experimental and
this makes it somewhat dangerous to use in a context in which value depends
on its stability. It is reasonable to be skeptical of the consistency of Coq’s
fairly sophisticated logic. For example, proofmarket.org placed a bounty on
the proposition False. In other words, there was a bitcoin bounty placed on
proving Coq inconsistent. While this should not have been provable in principle,

5The Mizar project was not known outside the Soviet block until the Iron Curtain fell.
One can find exciting discussions on the old QED mailing list prompted by the discovery that
a small Polish group led by Andrzej Trybulec had already implemented a system doing many
of the things under discussion.

14

in practice it was proven twice (for two different reasons). In addition, the
foundational logic of Coq is not quite fixed and may change in subtle ways with
each new version. Even with Coq’s very attractive properties, it is also clear
that it was not designed for a purpose like Qeditas.

An alternative to trying to use Coq directly is to have a small proof checker
in a sublogic of Coq, e.g., Egal [7]. Like Coq, Egal constructs Curry-Howard-de
Bruijn style proof terms, but for the logic of simple type theory [12]. The subset
of the code used for proof checking in Egal was easy to extract (and simplify)
for use as the kernel proof checker for Qeditas. Now that this kernel has been
extracted, Qeditas users could make use of any number of theorem provers to
construct proofs, so long as the prover is capable of producing documents with
Qeditas-checkable proof terms. It should be easy to obtain such proof terms
from a prover like Coq, so long as one works within a fragment of Coq’s logic
(e.g., avoiding type universes and inductive types).

Egal itself could also be used to construct Qeditas documents. Egal seems
to have been designed to specifically support a higher-order set theory (higher-
order Tarksi-Grothendieck), which would likely be one of many Qeditas founda-
tional theories. Like Mizar’s foundation, higher-order Tarski-Grothendieck is a
theory which is known to be consistent assuming the existence of certain large
cardinals. That is, if someone were to prove a contradiction in Egal, then either
there is an implementation bug or there is a proof of a surprising mathematical
result (that certain large cardinals cannot exist). Another advantage of using
Egal is that a few people from the cryptocurrency community gained some expe-
rience using Egal in the bitcoin theorem proving treasure hunt at mathgate.info
in 2014. It is likely that during this process a few bitcoin enthusiasts got over
the critical hump required to learn to use such a prover. The drawbacks of
choosing to use Egal are obvious: Egal does not provide the rich environment
of other provers, either in terms of the system or in terms of a community.
Moreover, the proof tactics in Egal are of only modest power, leaving the user
to do most of the work. Finally, the development of the system seems to have
ended. It would likely make sense to use Egal while bootstrapping the Qeditas
network until other more advanced theorem provers (e.g., Coq, Isabelle-HOL,
HOL-light, etc.) are modified to produce Qeditas checkable documents.

In addition to the systems above, there are two other systems that do not yet
exist. A peer-to-peer system called ProofPeer [35] supporting formalization is in
development. It is unclear at this early stage how similar ProofPeer and Qeditas
will be. Another similar project is BitFuncTor [6]. BitFuncTor is intended to
target functional programming instead of mathematics.

9 Conclusion

We have described Qeditas, a project to support distributed formalization of
mathematics using block chain technology. The underlying currency will be
similar to bitcoin in that there will be a similar 21 million unit cap. Two thirds
of these units will be part of an initial distribution based on a snapshot of the

15

Bitcoin block chain. Qeditas will support the publication of formal documents,
the ownership of mathematical objects and propositions as intellectual prop-
erty, the purchasing of rights to use such property and bounties on unproven
conjectures. The hope is that this will be sufficient to motivate and reward
participants to do the time consuming work of formalizing mathematics.

References

[1] andruiman. PoS forging algorithms: formal approach and multibranch
forging, 2014. github.com/ConsensusResearch/articles-papers/blob/
master/multibranch/multibranch.pdf.

[2] andruiman. PoS forging algorithms: multi-strategy forging and related se-
curity issues, 2014. github.com/ConsensusResearch/articles-papers/
blob/master/multistrategy/multistrategy.pdf.

[3] Anonymous. The QED Manifesto. In Alan Bundy, editor, CADE, volume
814 of Lecture Notes in Computer Science, pages 238–251. Springer, 1994.

[4] Adam Back. Hashcash – a denial of service countermeasure, 2002.
hashcash.org/papers/hashcash.pdf.

[5] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Pro-
gram Development. Coq’Art: The Calculus of Inductive Constructions.
Springer, 2004.

[6] bitFuncTor. bitfunctor.net.

[7] Chad E. Brown. The Egal Manual, September 2014.

[8] J. D. Bruce. The Mini-Blockchain Scheme, July 2014. cryptonite.info.

[9] Vitalik Buterin. Proof of Stake: How I Learned to Love
Weak Subjectivity, November 2014. blog.ethereum.org/2014/11/25/

proof-stake-learned-love-weak-subjectivity.

[10] Alexander Chepurnoy. Inside a Proof-of-Stake Cryptocurrency Part 4: The
Executable Forging Simulation, 2014.

[11] Adam Chlipala. Certified Programming with Dependent Types. MIT Press,
2011.

[12] Alonzo Church. A formulation of the simple theory of types. J. Symb. Log,
5(2):56–68, 1940.

[13] The Nxt community, July 2014.

[14] Mike Croteau and Emir Litranab. Proof of stake: Definite. an implemen-
tation of constant staking rewards to promote increased network activity,
August 2014.

16

[15] N. G. de Bruijn. The mathematical language AUTOMATH, its usage, and
some of its extensions. In M. Laudet, editor, Proceedings of the Symposium
on Automatic Demonstratio n, pages 29–61, Versailles, France, dec 1968.
Springer-Verlag LNM 125.

[16] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
Theorem. INDAG. MATH, 34:381–392, 1972.

[17] N.G. de Bruijn. A survey of the project AUTOMATH. In J.P. Seldin
and J.R. Hindley, editors, To H.B. Curry: Essays in Combinatory Logic,
Lambda Calculus and Formalism, pages 579–606. Academic Press, 1980.

[18] go1111111. Any coin that replaces Bitcoin will use the Bitcoin blockchain,
2013. bitcointalk.org/index.php?topic=367885.0.

[19] Georges Gonthier. The four colour theorem: Engineering of a formal proof.
In Deepak Kapur, editor, Computer Mathematics, 8th Asian Symposium,
ASCM 2007, Singapore, December 15-17, 2007. Revised and Invited Papers,
volume 5081 of Lecture Notes in Computer Science, page 333. Springer,
2007.

[20] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril
Cohen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell
O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev,
Enrico Tassi, and Laurent Théry. A machine-checked proof of the odd or-
der theorem. In Sandrine Blazy, Christine Paulin-Mohring, and David
Pichardie, editors, Interactive Theorem Proving - 4th International Con-
ference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings, volume
7998 of Lecture Notes in Computer Science, pages 163–179. Springer, 2013.

[21] Georges Gonthier and Assia Mahboubi. An introduction to small scale
reflection in Coq. Journal of Formalized Reasoning, 3(2):95–152, 2010.

[22] Michael J. C. Gordon. Introduction to the HOL system. In Myla Archer,
Jeffrey J. Joyce, Karl N. Levitt, and Phillip J. Windley, editors, Proceed-
ings of the 1991 International Workshop on the HOL Theorem Proving
System and its Applications, August 1991, Davis, California, USA, pages
2–3. IEEE Computer Society, 1991.

[23] Thomas Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, Truong Le
Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat
Nguyen, Truong Quang Nguyen, Tobias Nipkow, Steven Obua, Joseph
Pleso, Jason Rute, Alexey Solovyev, An Hoai Thi Ta, Trung Nam Tran,
Diep Thi Trieu, Josef Urban, Ky Khac Vu, and Roland Zumkeller. A formal
proof of the Kepler conjecture, 2015.

[24] John Harrison. HOL Light: An overview. In Stefan Berghofer, Tobias
Nipkow, Christian Urban, and Makarius Wenzel, editors, Proceedings of

17

the 22nd International Conference on Theorem Proving in Higher Order
Logics, TPHOLs 2009, volume 5674 of Lecture Notes in Computer Science,
pages 60–66, Munich, Germany, 2009. Springer-Verlag.

[25] W.A. Howard. The formulas-as-types notion of construction. In J.P. Seldin
and J.R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 479–490, New York, 1980. Aca-
demic Press.

[26] Cezary Kaliszyk and Alexander Krauss. Scalable LCF-style proof transla-
tion. In Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie,
editors, Proc. of the 4th International Conference on Interactive Theorem
Proving (ITP’13), volume 7998 of LNCS, pages 51–66. Springer Verlag,
2013.

[27] Cezary Kaliszyk and Josef Urban. PRocH: Proof reconstruction for HOL
Light. In Maria Paola Bonacina, editor, Proc. of the 24th International
Conference on Automated Deduction, volume 7898 of LNCS, pages 267–
274. Springer Verlag, 2013.

[28] Sunny King and Scott Nadal. PPCoin: Peer-to-Peer Crypto-Currency with
Proof-of-Stake, 2012.

[29] The Coq development team. The Coq proof assistant reference manual.
LogiCal Project, 2012. Version 8.4.

[30] Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi. Authenti-
cated data structures, generically. In Proceedings of the ACM Conference
on Principles of Programming Languages (POPL), January 2014.

[31] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz.
Permacoin: Repurposing bitcoin work for data preservation. In 2014 IEEE
Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May
18-21, 2014, pages 475–490. IEEE Computer Society, 2014.

[32] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.

[33] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL
— A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS.
Springer, 2002.

[34] Ulf Norell. Dependently typed programming in agda. In In Lecture Notes
from the Summer School in Advanced Functional Programming, 2008.

[35] Steven Obua, Jacques Fleuriot, Phil Scott, and David Aspinall. Proofpeer:
Collaborative theorem proving, 2014. proofpeer.net.

[36] Benjamin C. Pierce, Chris Casinghino, Marco Gaboardi, Michael Green-
berg, Cǎtǎlin Hriţcu, Vilhelm Sjoberg, and Brent Yorgey. Software Foun-
dations. Electronic textbook, 2014.

18

[37] Andrew Poelstra. Distributed consensus from proof of stake is impossible,
May 2014. download.wpsoftware.net/bitcoin/pos.pdf.

[38] Peter R. Spin-offs: bootstrap your alt-coin with a bitcoin-blockchain-
based initial coin distribution, 2014. bitcointalk.org/index.php?topic=
563972.0.

[39] Consensus Research. Github repo, 2014. github.com/ConsensusResearch.

[40] Piotr Rudnicki and Andrzej Trybulec. Mathematical knowledge manage-
ment in MIZAR. In Proc. of MKM 2001, 2001.

[41] Kazuhiko Sakaguchi. proofmarket.org.

[42] Bill White. Formal Idealizations of Cryptographic Hashing, 2015.

[43] Bill White. A Theory for Lightweight Cryptocurrency Ledgers, 2015.

[44] Freek Wiedijk. Estimating the Cost of a Standard Library for a Mathe-
matical Proof Checker. www.cs.ru.nl/~freek/notes/mathstdlib2.pdf.

[45] Gavin Wood. Ethereum: a secure decentralised generalised transaction
ledger. Final draft – under review, gavwood.com/Paper.pdf.

19

