
Qeditas Technical Documentation

The Qeditas Developers

October 3, 2016

2

Contents

1 Introduction 7

1.1 Code Repository . 7
1.2 Qeditas Theory in Coq . 8
1.3 License and Credit . 8

2 Configuration Related Code 9

3 Utilities 11

3.1 Logging . 11
3.2 Eras and Block Size . 11
3.3 Randomness . 12

4 Serialization 13

5 Cryptographic Hashing 15

5.1 Auxiliary Functions . 15
5.2 Sha256 . 16
5.3 Ripemd160 . 17
5.4 Hash . 17
5.5 Hash Trees . 22

6 Cryptocurrency Operations 23

6.1 Elliptic Curve Code . 23
6.2 Cryptocurrency Operations . 24
6.3 Cryptographic Signature Checking 25
6.4 Scripts and Generalized Signatures 27

7 Networking 29

7.1 Network Messages . 29
7.2 Network Connections . 32
7.3 Network Listener . 33
7.4 Network Seeker . 34
7.5 Other Exported Network Functions and Data 34

8 Database 37

3

4 CONTENTS

9 Formalized Mathematics 43

9.1 Simple Types . 44

9.2 Terms and Propositions . 45

9.3 Proof Terms . 47

9.4 Publications . 48

9.4.1 Theories . 48

9.4.2 Signatures . 49

9.4.3 Documents . 51

9.5 Dependency Checking . 52

9.6 Trees of Theories and Signatures 54

9.7 Substitution and Normalization 55

9.8 Type Checking and Proof Checking 61

9.9 Publication Checking . 63

10 Assets and Transactions 67

10.1 Assets . 67

10.1.1 Obligations . 68

10.1.2 Categories of Preassets and Assets 68

10.1.3 Types for Transaction Inputs and Outputs 71

10.1.4 Functions . 71

10.1.5 Asset Database . 75

10.1.6 Creation of Objects and Propositions 76

10.2 Transactions . 77

10.2.1 Databases for Transactions and Signatures 80

11 Ledger Trees 81

11.1 Compact Ledger Trees . 81

11.1.1 Coin-age . 82

11.1.2 Approximating Asset Lists by Hlists 83

11.1.3 Compact Trees . 84

11.1.4 Elements . 85

11.1.5 Transactions . 87

11.2 Grafting Trees . 94

12 Blocks and Block Chains 95

12.1 Stake Modifiers . 95

12.2 Targets . 96

12.3 Proof of Storage . 97

12.4 Hits and Cumulative Stake . 98

12.5 Block Headers . 99

12.6 Proof of Forfeiture . 102

12.7 Blocks . 102

12.8 Databases for Block Information 105

12.9 Chains . 105

CONTENTS 5

13 Block Trees 107

13.1 Block Tree . 107
13.2 Checkpoints . 109
13.3 Best Node . 109
13.4 Other Local Data . 110
13.5 Networking Code . 110
13.6 Dumping the State . 113

14 Commands 115

15 Staking Code 119

16 Top Level Code 121

16.1 Initialization . 121
16.2 Initialization of the Network . 122
16.3 Main Loop . 123

6 CONTENTS

Chapter 1

Introduction

This document is intended as a reference for those wanting to understand, mod-
ify or extend the code supporting Qeditas [31]. The document is currently under
construction (in November 2015), as is the Qeditas code itself.

Qeditas is intended to be a realization of the QED Project [1] to construct
a library of formalized mathematics. For those wanting to learn more about
formalized mathematics [2] is a good starting point. Some popular systems
for formalizing mathematics include Mizar [28], Isabelle [22], various HOL sys-
tems [14, 16], Coq [18] and Agda [24]. Some large formalizations of major
mathematical results are described in [11], [12] and [15].

Qeditas uses a block chain and distributed consensus system to maintain
both a library of formal publications and information about who made a defini-
tion or proved a theorem. In addition, the block chain maintains and enforces
a rights management system determining conditions under which an object can
be imported and used (without repeating the definition) and when a theorem
can imported as something known (without needing to reprove it). The first
network with a block chain and distributed consensus system was Bitcoin and
Nakamoto’s white paper [21] provides a good introduction. Qeditas uses a proof
of stake consensus system [6] combined with proof of storage (similar to proof
of retrievability [20]). Proof of stake is sensitive to the initial distribution, and
Qeditas has an initial distribution based on a snapshot of the Bitcoin block
chain. This makes Qeditas a Bitcoin “spin-off” [26, 10].

1.1 Code Repository

The main git repository is publicly available:

git clone git://qeditas.org/qeditas.git

There are three primary git branches: master, dev and testing. The
master branch is intended to contain the code which can be tagged to cre-
ate specific Qeditas versions. The dev branch is where code can be written,

7

8 CHAPTER 1. INTRODUCTION

modified and to some degree tested. The testing branch contains a number
of unit tests. The code in dev should regularly be merged into testing and
the unit tests run to ensure the unit tests still pass. In addition, new unit tests
should be added as new code is added to the dev branch. Unfortunately, the
dev branch has developed significantly since it was last merged into the testing
branch, and so the code and unit tests in the testing branch is out of date with
respect to the code in the dev and master branches.

When the code in dev is stable, it should be merged to master.
The source for this document is also part of the dev branch and the intention

is for it to correspond to the code in the dev branch. Likewise, the source for
this document can be merged into the master branch when appropriate.

Another branch, initdistr, contains code for computing the ledger tree for
the initial distribution of Qeditas currency units. This distribution was based
on a snapshot of the Bitcoin block chain.

1.2 Qeditas Theory in Coq

There is also a separate formal Qeditas related development in Coq in which
certain properties were proven. The git repository is named qeditastheory

and is also publicly available:

git clone git://qeditas.org/qeditastheory.git

The Coq code is somewhat out of date since some aspects of Qeditas have
changed in the meantime. Nevertheless the Coq development should usually
indicate how different data types were intended to be used and what properties
certain functions were meant to have. In appropriate places we will point not
only to the Qeditas OCaml code, but also corresponding code in the Coq version.

1.3 License and Credit

Qeditas is an open source project and all code and documentation is released
under the MIT License. The code and documentation is attributed to “The
Qeditas developers” rather than giving a list of names or handles. Some open
source developers advise not to include names and handles inside code com-
ments. Having a name in the code might suggest a kind of “ownership” that
may make others uncomfortable making modifications to the code. If individ-
ual coders wish to record their contributions to the code, the appropriate place
would be in this technical documentation. (For example, most of the initial
code for Qeditas and the first version of this documentation was written by Bill
White in 2015 with significant additions and modifications by Trent Russell in
2016.) Also, if code is taken or ported from other open source projects, this
should be noted in this document. (For example, the code for elliptic curves
and proof checking was taken from Egal [3] and this is noted in the appropriate
sections.)

Chapter 2

Configuration Related Code

The modules config and setconfig are for customizing the configuration of Qed-
itas. The configure script creates an OCaml file config.ml setting default
values for the variables exposed in the interface config.mli:

• datadir : the location of the main directory containing the local Qeditas
configuration file, wallet file, and other data (usually .qeditas in the
user’s home directory)

• testnet : set to true if Qeditas is running on the testnet instead of the
mainnet

• staking : set to true if Qeditas should stake

• ip : optionally the IP address to listen for incoming connections

• ipv6 : optionally the IPv6 address to listen for incoming connections

• port : the port to listen for incoming connections

• socks : None if connections are not routed through SOCKS; Some(v) if
connections are routed through SOCKS protocol v where v is 4 or 51

• maxconns : the maximum number of connections

• seed : the initial seed which is used to initialized the current stake modifier
and future stake modifier.

• lastcheckpoint : the last checkpoint (currently unused)

• randomseed : an optional string used to seed the OCaml Random mod-
ule. If randomseed is given it should be cryptographically strong and new
each time Qeditas is started. If randomseed is not given, then Random is
initialized using data from /dev/random. If /dev/random does not exist
(e.g., under MS Windows), randomseed must be given and it is the user’s
responsibility to ensure randomseed is cryptographically strong and fresh.

1At the moment, 5 is not yet supported.

9

10 CHAPTER 2. CONFIGURATION RELATED CODE

• checkpointskey : the private key for signing checkpoints (in Qeditas testnet
WIF format). Signed checkpoints are only intended for the testnet, and
only until the testnet is sufficiently stable. The corresponding public key
is (x, y) where

x = 6371720373269100296662749352347839551092563796413818519910
1530429614494608215

y = 1455153899310935243255864964656407400101005941691152503242
8212764782058901234

These values can be found in blocktree.ml as the settings for check-

pointspubkeyx and checkpointspubkeyy. If a future version of Qeditas should
use a different signing key for checkpoints, simply update checkpointspub-

keyx and checkpointspubkeyy in blocktree.ml to the new public key val-
ues.

The functions exposed in the interface setconfig.mli override the de-
fault compiled settings by reading a configuration file and checking the com-
mand line arguments of qeditasd or qeditascli. This is done by calling
datadir from command line to set datadir from the command line if the argument
-datadir was given, then calling process config file to read the qeditas.conf

file in datadir, and finally calling process config args to set the remaining config-
uration variables by processing other command line arguments than -datadir.

Chapter 3

Utilities

The module utils (utils.ml and utils.mli) defines a few simple functions
used by many other modules. The current code is for handling the log file, for
computing the “era” and corresponding maximum block size, and for initializing
and using OCaml’s Random module. More details about each of these follow.

3.1 Logging

Qeditas logs information to a log file which should be in the main directory given
by datadir (presumably .qeditas) or the testnet subdirectory. The function
openlog and closelog open and close the log file. The relevant out channel is the
value held in the log ref cell.

(Note: At the moment Qeditas logs an excessive amount of information
intended for debugging purposes.)

3.2 Eras and Block Size

The block height determines what “era” Qeditas is in, as computed by the era

function. The era is used to determine the block rewards and the maximum
block delta size. (A “block” consists of a “header” and a “delta.”) The initial
era is “Era 1” which lasts from blocks 1 through 70000 (when the reward is 25
fraenks and the maximum block delta size is 500,000 bytes). The next 41 eras
(“Era 2” through “Era 42”) each last 210000 blocks, at which time the reward
halves and the maximum block delta size doubles. Starting at block 8680001 (in
roughly 165 years after block one) the final era (“Era 43”) begins. In this final
era the block reward is 0 and the maximum block delta size is 512 megabytes.

The code for computing the maximum block delta size (maxblockdeltasize) is
included in the utils module because it is needed in the net module to determine
the maximum message size. On the other hand, the function for computing the
reward (rewfn) is not given until the module block.

11

12 CHAPTER 3. UTILITIES

3.3 Randomness

The boolean random initialized is set to false until initialize random seed has been
called. initialize random seed is called the first time a random value is requested.1

The function initialize random seed calls Random.full init using some data (or
raises an exception). The data is either the value of randomseed or 32 bytes
from /dev/random. If randomseed is not set and /dev/random does not exist,
then a Failure exception is raised.

The functions rand bit, rand int32 and rand int64 use OCaml’s Random mod-
ule to obtain a boolean, int32 or int64, respectively. A corresponding func-
tion rand 256 in the module sha256 generates a 256-bit random number using
OCaml’s Random module. (It is in this later module because it uses code to
create a big int from 8 int32 values.) There is also a (currently unused) function
strong rand 256 in the module sha256 which obtains the 256-bit random big int

using data from /dev/random.

1This way of doing things was so that, in principle, a user could use Qeditas in a way that
does not require randomness (e.g., never signing a block or transaction and never generating
a private key). In practice a random number is requried by initialize in qeditas.ml to set the
node’s nonce – this nodes nonce in net.

Chapter 4

Serialization

The module ser (ser.ml and ser.mli) contains the basic code for serializing
data. Throughout the code there are functions with names of the form seo τ

(output) and sei τ (input). In each case seo τ is a function for creating a se-
rialized output for an element of type τ and sei τ is a function for creating an
element of type τ given its serialization.

There are two representations for the serializations: strings and channels
and the input and output functions are polymorphic so they can support both
representations. The types seosbt and seist correspond to the string representa-
tion and there are corresponding atomic functions seosb (output bits to a string
buffer), seosbf (flush output to string buffer) and seis (input bits from a string).
The types seosct and seict correspond to the channel representation and there
are corresponding atomic functions seoc (output bits to a channel), seocf (flush
output channel) and seic (input bits from a channel).

The functions to output its take three arguments: the number of bits n, the
bits to output as an integer m with 0 ≤ m < 2n and the serialization output
object. The functions to flush the output takes the serialization output object
and ensures any remaining its are output, assuming the remaining its are zero.
The functions to input its from a channel take two arguments: the number of
bits n to input and the serialization input object. It returns both an integer m
where 0 ≤ m < 2n and the serialization input object.

The remainder of the functions defined in ser are for serialization basic data:
booleans, bytes, 32-bit integers, 64-bit integers, big integers (the OCaml type
big int) assumed to be 256-bit integers and strings. There are also other serial-
ization functions for integers: seo varint and sei varint uses the varint represen-
tation used in Bitcoin, while seo varintb and sei varintb uses a different compact
representation to represent numbers less than 65, 536.

In addition there are functions used to construct serialization functions for
list types, option types and product types with up to 6 components. For ex-
ample, there are functions seo list and sei list. When serialization functions are
needed for lists of bytes, we simply use seo list applied to seo int8 and sei list

applied to sei int8.

13

14 CHAPTER 4. SERIALIZATION

Note that the serialization code is inherently higher-order (functions are
first-class values). Firstly, the atomic functions are passed as arguments to the
serialization functions for each type so the same serialization code can be used
for both representations. Secondly, the serialization functions themselves are
passed to functions like seo list and sei list.

There is one minor issue with the serialization code which may be confusing
and hopefully will not be a nightmare to maintain. The bits are used to construct
a byte from least significant to most significant. As a consequence, different ways
to output the same sequence of bits can be confusing. Let o be an atomic output
function (either seosb or seoc). For example, suppose we wish to output the bit
0 followed by the bit 1. We can do this in one of two ways:

• Call o twice: first as o 1 0 (to output the one bit 0) and then as o 1 1 (to
output the one bit 1).

• Call o once as o 2 2 (to output the two bits 10, the binary representation
of 2).

In some places this can make serialization code difficult to correctly interpret.
Note: The unit tests for the ser module are in basicunittests.ml in the

src/unittests directory in the testing branch. These unit tests give a number
of examples demonstrating how the functions described above should behave.
The testing branch is, however, out of date with the code in the dev and
master branches.

Chapter 5

Cryptographic Hashing

The modules hashaux, sha256, ripemd160, hash and htree contain code for crypto-
graphic hashing functions. The two hashing functions supported are SHA256 [23]
and RIPEMD-160 [8]. The RIPEMD-160 code only supports hashing a 256 bit in-
put and is assumed to be called on the result of applying SHA256.

Profiling suggests that the hashing functions are the biggest computational
bottleneck in Qeditas. Improvements to this code could make Qeditas run
significantly faster.

Note: The unit tests for these modules are in basicunittests.ml in the
src/unittests directory in the testing branch. These unit tests give a number
of examples demonstrating how the functions described below should behave.
The testing branch is, however, out of date with the code in the dev and
master branches.

5.1 Auxiliary Functions

The module hashaux implements a few helper functions needed by both hashing
functions.

• hexsubstring int32 takes a string of hexadecimal digits and a position. The
8 characters starting at the position are interpreted as a 32-bit integer
(big endian).

• int32 hexstring takes a string buffer and a 32-bit integer and adds 8 hex-
adecimal digits to the buffer representing the integer (big endian).

• big int sub int32 takes a big integer x and an integer i and returns the
32-bit integer resulting from shifting away i bits of x (i.e., dividing by 2i)
and then taking the 32 least significant bits (i.e., modulo 232).

• int32 big int bits takes a 32-bit integer x and an integer i and returns the
big integer resulting from shifting x forward by i bits (i.e., multiplying by
2i).

15

16 CHAPTER 5. CRYPTOGRAPHIC HASHING

• int32 rev takes a 32-bit integer of the form b32
24 + b22

16 + b12
8 + b0 and

returns the reversed 32-bit integer b02
24 + b12

16 + b22
8 + b3.

5.2 Sha256

The module sha256 defines a type md256 (message digest of 256 bits) as a prod-
uct of 8 32-bit integers. (The type md256 is also sometimes used to represent
other 256-bit numbers, such as the x or y component of a public key.) There
is also an array currblock of 16 32-bit integers. Various other arrays are used
internally and not exposed by the interface.

The following functions are defined:

• sha256init initializes the state to begin performing the hashing operation.

• sha256round performs one round of the hashing operation.

• getcurrmd256 returns the current md256 (extracted from the internal array
currhashval).

• sha256str returns the result of hashing a given string with SHA256.

• sha256str returns the result of double hashing a given string with SHA256.

• md256 hexstring converts a 256-bit message digest to the corresponding
hexadecimal string.

• hexstring md256 converts a hexadecimal string to the 256-bit message di-
gest to the corresponding hexadecimal string.

• md256 big int converts a 256-bit message digest to the corresponding big
integer.

• big int md256 converts a big integer (assuming it is less than 2256) to the
256-bit message digest to the corresponding hexadecimal string.

• seo md256 serializes a 256-bit message digest.

• sei md256 deserializes a 256-bit message digest.

In addition, there are two functions for creating 256-bit random values of
type big int:

• strong rand 256 : reads 256 bits from /dev/random. This function is cur-
rently unused.

• rand 256 : uses OCaml’s Random module after initialized (see utils) to
obtain 8 32-bit integers which are combined into a 256-bit big int value.

5.3. RIPEMD160 17

5.3 Ripemd160

The module ripemd160 implements RIPEMD-160 restrict to 256-bit message di-
gests as inputs. The module defines a type md (message digest of 160 bits) as
a product of 5 32-bit integers.

The following functions are defined:

• ripemd160 md256 returns the result of hashing a given 256-bit message
digest with RIPEMD-160.

• md hexstring converts a 160-bit message digest to the corresponding hex-
adecimal string.

• hexstring md converts a hexadecimal string to the 160-bit message digest
to the corresponding hexadecimal string.

5.4 Hash

The module hash is important. It defines a type hashval as 5 32-bit integers
(representing a 160-bit hash value).

A function hash160 takes an arbitrary string to the result of hashing first by
SHA256 and then by RIPEMD-160. The type hashval is implemented the same
way as the type md in the module ripemd160. If they were defined differently,
the function hash160 would be ill-typed.

Note: The Coq formalization contains Coq module a CryptoHashes which
corresponds to some of what is in the hash module. In particular, a type of hash-
val is defined along with functions to hash natural numbers, addresses (which
are defined to be 160 bit sequences in the Coq module Addr) and pairs of hash
values. These functions are injective and give disjoint hash values. From these,
a number of other hashing functions are defined in ways that continue to ensure
injectivity and disjointness. The Coq representation is idealized. Hash values is
infinite and the hashing functions are not cryptographic hashing functions. For
more information, see [30].

There are a variety of functions for creating, using and combining hash
values. The following functions

• hashval bitseq converts a hash value to a list of 160 booleans.

• hashval hexstring converts a hash value to a string of 40 hexadecimal digits.

• hexstring hashval converts a string of 40 hexadecimal digits to a hash value.

• printhashval prints a hash value as 40 hexadecimal digits.

• hashval rev performs a bytewise reversal of the hash value.1

• hashval big int converts a hash value to a big integer.

1This seems to be unused.

18 CHAPTER 5. CRYPTOGRAPHIC HASHING

• big int hashval converts a big integer to a hash value.

• seo hashval serializes hash values.

• sei hashval deserializes hash values.

The following functions create (effectively) unique hash values from given input.
Internally in each case the value being hashed is prefixed with a distinct 32-bit
integer so that the hash value given by different functions will be unique. For
example, hashint32 prefixes the 32-bit integer with the 32-bit integer 1 while
hashint64 prefixes the 64-bit integer with the 32-bit integer 2.

• hashint32 hashes a 32-bit integer.

• hashint64 hashes a 64-bit integer.

• hashpair hashes a pair of hashes.

• hashpubkey hashes a public key, given as two md256 values.

• hashpubkeyc hashes a compressed public key, given by a boolean (indicat-
ing if y is even or odd) and one md256 values (giving x).

• hashtag combines a hash value with a 32-bit integer to create a different
hash value. This is used when we wish to ensure later data structures
create unique hash values.

• hashlist hashes a list of hash values. This could be implemented by a
simple recursion using hashpair, but this would be inefficient. Instead the
list is iterated over with sha256round being called when appropriate.

• hashfold is given a function f which returns a hashval for a given input and
a list of appropriate inputs for f and iteratively calls f on the components
of the list while performing sha256round to compute a hash value for the
list of hash values computed by f over the list.

• hashbitseq takes a list of booleans and creates a hash values. The naive way
of doing this using hashlist would be too inefficient. Instead the booleans
are treated as 32-bit integers by considering them in groups of 32.

Sometimes optional hash values are used. This is important, for example, when
we want to have an “empty” hash value ⊥ corresponding to the hash of some
“empty” data.

• ohashlist takes a list of hash values and computes an optional hash value.
The optional hash value is ⊥ if and only if the input is the empty list.

• hashopair takes two optional hash values and returns an optional hash
value. The output is ⊥ if and only if both inputs were ⊥.

5.4. HASH 19

• hashopair1 takes a hash value x and an optional hash value y and returns
a hash value (known to not be ⊥). hashopair1 is essentially the special
case of hashopair where the first value is known not to be ⊥.

• hashopair2 takes an optional hash value x and a hash value y and returns
a hash value (known to not be ⊥). hashopair2 is essentially the special
case of hashopair where the second value is known not to be ⊥.

In addition, various types of addresses are defined. Fundamentally there
are four kinds of addresses: p2pkhaddr (pay to public key hash addresses, a.k.a.,
p2pkh addresses), p2shaddr (pay to script hash addresses, a.k.a., p2sh addresses),
termaddr (term addresses) and pubaddr (publication addresses). Each of these
types is defined the same way as hash values (as 5 32-bit integers) and so an
object of one of these types can be used as an object of another.

• p2pkhaddr A pay to public key hash addresses is the hash value obtained by
hashing a public key. The intention is that the holder of the corresponding
private key can sign transactions related to the address. The code for
checking such signatures is in the module signat.

• p2shaddr A pay to script hash address is the hash value obtained by hash-
ing a script.2 Such a script can act as a generalized signature in the
following sense: the script is executed and if the result is 1 then the gener-
alized signature is accepted. This is a “generalized signature” since some
of the script operations check a signature. The code for executing scripts
and checking generalized signatures is in the module script.

• termaddr Term addresses are hash values obtained in one of three ways:

1. A term address may be the hash root of a closed simply typed term
t. This is the global (theory independent) term address of t.

2. Given a theory T and a closed term t which has type τ in the theory
T , the combined hash of T , hash root of t and the hash of τ gives a
term address.3 This is the address of the term t in the theory T .

3. Given a theory T and a closed proposition t, the combined hash of
T and hashroot of t gives a term address.4

Ownership information about a term or proposition (either globally or as
part of a theory) is stored at corresponding term address. The author of
the first document published which defines a term or proves a proposition
can and must also supply ownership information. This ownership infor-
mation determines the conditions under which the term or proposition

2Qeditas uses essentially the same scripting language as Bitcoin as of early 2015. Two
Bitcoin operations are not supported: OP SHA1 and OP RIPEMD160.

3The combined hash is again hashed with a tag with 32 to avoid the possibility that the
combined hash value is the same as a different kind of term address.

4The combined hash is again hashed with a tag with 33 to avoid the possibility that the
combined hash value is the same as a different kind of term address.

20 CHAPTER 5. CRYPTOGRAPHIC HASHING

can be imported into future documents. Term addresses corresponding to
terms or propositions within a theory are also used to ensure terms have
the correct type (without needing to repeat the definition) in the theory
and to ensure propositions are already known (without needing to repeat
a proof).

• pubaddr A publication address corresponds to the hash root of a published
document, theory specification or signature specification.

In addition to the four basic kinds of addresses, there are two other types of
addresses:

• payaddr The type payaddr (of pay addresses) is the disjoint sum of the types
p2pkhaddr and p2shaddr. This is implemented by taking a boolean along
with 8 32-bit integers. The 8 32-bit integers is a hash value representing
either a p2pkhaddr or a p2pkhaddr. The boolean is false if the hash value
represents a p2pkhaddr, and is true if the hash value represents a p2shaddr.

• addr The type addr (of addresses) is the disjoint sum of the four types
p2pkhaddr, p2shaddr, termaddr and pubaddr. This is implemented by tak-
ing an integer i ∈ {0, 1, 2, 3} along with 8 32-bit integers. The 8 32-bit
integers is a hash value representing either a p2pkhaddr, a p2shaddr, a
termaddr or a pubaddr. If i = 0, the hash value represents a p2pkhaddr.
If i = 1, the hash value represents a p2shaddr. If i = 2, the hash value
represents a termaddr. If i = 3, the hash value represents a pubaddr.

The following functions operate on addresses.

• hashval p2pkh payaddr gives the pay address corresponding to a hash value
interpreted as a pay to public key hash addresses.

• hashval p2sh payaddr gives the pay address corresponding to a hash value
interpreted as a pay to script hash address.

• hashval p2pkh addr gives the address corresponding to a hash value inter-
preted as a pay to public key hash addresses.

• hashval p2sh addr gives the address corresponding to a hash value inter-
preted as a pay to script hash address.

• hashval term addr gives the address corresponding to a hash value inter-
preted as a term address.

• hashval pub addr gives the address corresponding to a hash value inter-
preted as a publication address.

• addr bitseq returns a list of 162 booleans corresponding to an address,
where the first two booleans determine which kind of address it is and the
remaining 160 are the hash value.

• bitseq addr returns an address given a list of 162 booleans.

5.4. HASH 21

• p2pkhaddr payaddr converts a pay to public key hash address (a hash value)
to a pay address by indicating it is a pay to public key hash address.

• p2shaddr payaddr converts a pay to public key hash address (a hash value)
to a pay address by indicating it is a pay to script hash address.

• p2pkhaddr addr converts a pay to public key hash address (a hash value)
to an address by indicating it is a pay to public key hash address.

• p2shaddr addr converts a pay to public key hash address (a hash value) to
an address by indicating it is a pay to script hash address.

• payaddr addr converts a pay address to an address. In practice this simply
means converting the first component from a boolean to an integer (false
to 0 and true to 1).

• termaddr addr converts a term address (a hash value) to an address by
indicating it is a term address.

• pubaddr addr converts a publication address (a hash value) to an address
by indicating it is a publication address.

• payaddr p checks if an address is a pay address.

• p2pkhaddr p checks if an address is a pay to public key hash address.

• p2shaddr p checks if an address is a pay to script hash address.

• termaddr p checks if an address is a term address.

• pubaddr p checks if an address is a publication address.

• hashaddr hashes the address creating a unique hash value. (This is different
from the underlying hash value of the address since the prefix is included
before rehashing.)

• hashpayaddr performs the same operation of hashaddr but only on pay
addresses.

• hashtermaddr performs the same operation of hashaddr on term addresses.

• hashpubaddr performs the same operation of hashaddr on publication ad-
dresses.

• seo addr serializes an address.

• sei addr deserializes an address.

• seo payaddr serializes a pay address.

• sei payaddr deserializes a pay address.

• seo termaddr serializes a term address.

22 CHAPTER 5. CRYPTOGRAPHIC HASHING

• sei termaddr deserializes a term address.

• seo pubaddr serializes a publication address.

• sei pubaddr deserializes a publication address.

5.5 Hash Trees

The module htree defines a polymorphic type htree which stores data in a tree
indexed by a list of booleans. In practice the list of booleans comes from a hash
value. The following functions are exported:

• htree lookup is given a boolean list and an htree and returns the data if
found and None if it is not found.

• htree create is given a boolean list b and data x and returns a new htree

with only this single entry (x at position b).

• htree insert is given an htree, a boolean list and data x and returns the
result of inserting the data into the htree (x at position b). This will shadow
data already at position b if there were any. (In practice this should never
happen since b should be obtained from a hash value determined by x.)

• ohtree hashroot computes an optional hash value given a function f (which
computes optional hash values for members of the underlying type), the
current depth n and an optional htree. This is essentially the Merkle root
of the htree.

In practice htree is used in two ways: one is to story theories and the other
is to store theory-specific signatures.5 These specific uses will be discussed in
Chapter 9 where the module mathdata is considered.

5Here signature is used to mean a collection of constants, definitions and known proposi-
tions and should not be confused with cryptographic signatures.

Chapter 6

Cryptocurrency Operations

The modules secp256k1, cryptocurr, signat and script contain code for cryptocur-
rency related operations. In particular, secp256k1 implements the elliptic curve
secp256k1 [27], cryptocurr supports base 58 formats for private keys and ad-
dresses, signat supports cryptographic signatures and script supports the Bitcoin
scripting language (mostly).

Note: The unit tests for these modules are in basicunittests.ml in the
src/unittests directory in the testing branch. These unit tests give a number
of examples demonstrating how the functions described below should behave.
The testing branch is, however, out of date with the code in the dev and
master branches.

6.1 Elliptic Curve Code

The module secp256k1 contains the operations for the corresponding elliptic
curve [27]. Most of the code in this module was taken from the code for Egal [3].
256-bit integers are represented using big integers (big int) from OCaml’s nums
library. A function evenp is defined and exposed since it is used elsewhere.

The 256-bit prime p used in the elliptic curve is exposed as the big integer
p. The following functions implement operations modulo p:

• add implements addition modulo p.

• mul implements multiplication modulo p.

• pow implements xi modulo p where x is a big integer and i is an integer.

• eea implements the Extended Euclidean Algorithm which is used to com-
pute multiplicative inverses modulo p.

Points on the elliptic curve are represented by element of type pt which is
defined to be an optional pair (x, y) of big integers. None represents the zero
point (point at infinity). The following functions are defined and exposed:

23

24 CHAPTER 6. CRYPTOCURRENCY OPERATIONS

• addp implements addition of two points.

• smulp implements scalar multiplication of a big integer to a point.

The base point g on the curve (which generates the group) is exposed as g.
The order n of g is exposed as the big integer n. The function curve y takes a
boolean e and a big integer x and returns the big integer y such that (x, y) is a
point on the curve where y is even if e is true and y is odd if e is false.

As usual, there are serialization functions seo pt and sei pt for points. The
serialization functions assume the components x and y of the point are positive
integers less than 2256.

6.2 Cryptocurrency Operations

The module cryptocurr implements functions which convert private keys and
addresses to and from base 58 representations.

• base58 converts a big integer into a base 58 string.

• frombase58 converts a base 58 string to a big integer.

• qedwif converts a big integer (private key) and a boolean (indicating if
it is for a compressed address) to a base 58 string. The Qeditas WIF
format uses a two byte prefix of 5, 8 for compressed addresses and 2, 30 for
uncompressed addresses. The result is that compressed WIFs start with
the character k and uncompressed WIFs start with the character K.

• privkey from wif takes a Qeditas WIF string and returns the corresponding
private key (as a big integer) along with a boolean indicating if it is for
the compressed address.

• privkey from btcwif takes a Bitcoin WIF string and returns the correspond-
ing private key (as a big integer) along with a boolean indicating if it is
for the compressed address. This function is included to make it easy for
people to import Bitcoin private keys corresponding to the initial distri-
bution.

• pubkey hashval takes a non-zero public key (a pair (x, y)) and a boolean
(indicating if the compressed address should be used) and returns the 20
bytes which result from hashing either the compressed public key (2 with
x if y is even; 3 with x if y is odd) or the uncompressed public key (4 with
x and y). This hash value is also the corresponding pay to public key hash
address.

• hashval from addrstr takes a string with a Qeditas address and returns the
underlying hash value.

• hashval btcaddrstr takes a hash value and returns the corresponding Bit-
coin address.

6.3. CRYPTOGRAPHIC SIGNATURE CHECKING 25

• addr qedaddrstr takes a Qeditas address and returns a base 58 string rep-
resentation of the address. The prefix byte used is different for the four
different kinds of addresses:

– Pay to public key hash addresses use a prefix byte of 58 and so these
Qeditas addresses begin with the character Q.

– Pay to script hash addresses use a prefix byte of 120 and so these
Qeditas addresses begin with the character q.

– Term addresses use a prefix byte of 66 and so these Qeditas addresses
begin with the character T.

– Publication addresses use a prefix byte of 56 and so these Qeditas
addresses begin with the character P.

• qedaddrstr addr takes a string with a base 58 Qeditas address and returns
the Qeditas address.

• btcaddrstr addr takes a string with a base 58 Bitcoin address (either p2pkh
or p2sh) and returns the Qeditas address.

Some of the code in this module was taken from the code for Egal [3]. Egal
included BIP 32 code that isn’t needed in Qeditas. Egal relied on openssl to
compute SHA256 and ripemd160 hashes, but Qeditas does this itself.

6.3 Cryptographic Signature Checking

The module signat implements functions for creating and verifying cryptographic
signatures over the elliptic curve. A cryptographic signature (represented by the
type signat) is a pair (r, s) of big integers. As usual, the functions seo signat and
sei signat serialize and deserialize elements of type signat. Let n be the order of
the group for secp256k1.

• decode signature takes a base 64 string and returns (i, c, (r, s)) where i ∈
{0, 1, 2, 3} (“recid”) is a tag to help recover the public key from the sig-
nature and what was signed, c (“fcomp”) is a boolean indicating if the
signature is for a compressed public key and (r, s) is the cryptographic
signature.

• signat big int takes a big integer e < n (in practice e < 2160), a big integer
private key k < n and a random big integer R < n and returns a signature
(r, s). The signature (r, s) signs e with the private key k.

• signat hashval is the same as signat big int except it is given a hash value
h to sign instead of a big integer. The implementation simply converts h
to a (160-bit) big integer using hashval big int and calls signat big int. The
result is a signature (r, s) signing h with the given private key.

26 CHAPTER 6. CRYPTOCURRENCY OPERATIONS

• verify signed big int takes a big integer e, a point (public key) (x, y) and a
signature (r, s) and returns a boolean indicating if (r, s) is a valid signature
of e by the private key corresponding to (x, y).

• verify p2pkhaddr signat takes a big integer e, a p2pkhaddr α (equivalently,
a hash value), a signature (r, s), an integer i ∈ {0, 1, 2, 3} and a boolean
c. It uses e, (r, s) and i to recover a point on the curve using recover key.
If recover key returns the zero point, then the signature is not valid and
the boolean false is returned. Otherwise, recover key returns a public key
(x, y). The p2pkhaddr corresponding to (x, y) (compressed if c is true,
uncompressed otherwise) is computed using pubkey hashval and compared
with α. If they are the same, then the signature is valid and the boolean
true is returned. Otherwise, the signature is not valid and the boolean
false is returned.

• verifybitcoinmessage is used to verify a bitcoin signed message returning
a boolean (true if valid, false otherwise). The inputs are a p2pkhaddr α,
i ∈ {0, 1, 2, 3}, a boolean c, a cryptographic signature (r, s) and a string
m (the message). If Qeditas is running in the testnet, then the message is
prefixed with testnet:. This allows people to sign, for example, endorse-
ments which are valid on the testnet, but not on the mainnet. The message
is then modified the same way as the Bitcoin core client (essentially in-
cluding Bitcoin Signed Message: and some characters indicating the
length of this prefix and the length of the message). The remainder of the
work is performed by the internal verifymessage function: The message is
double SHA256 hashed and converted to a big integer e. The public key
is attempted to be recovered using e, (r, s) and i using recover key (with
false returned upon failure). Assuming the public key (x, y) is recovered,
the final check verifies that the hash of the public key (compressed if c is
true, uncompressed otherwise) is α.

• verifybitcoinmessage recover is used to verify a bitcoin signed message re-
turning an optional public key (x, y) (the corresponding public key if the
signature is valid, the None if not). It behaves equivalently to verifybit-

coinmessage except upon success it returns the public key as Some(x, y)
and returns None upon failure. In this case, internal verifymessage recover

function is used.

There is also an internal function recover key which computes a public key
(x, y) from a big integer e (from the hash value of what was signed), a signature
(r, s) and a “recid” i ∈ {0, 1, 2, 3}. This should be the public key corresponding
to the private key which was used to construct (r, s) from e.

Note: The Coq module CryptoSignatures is intended to correspond to the
signat module. It defines a Coq type signat and functions to simulate signing
with a private key and checking a signature. The actual implementation is
trivial, but only the required properties are exported.

6.4. SCRIPTS AND GENERALIZED SIGNATURES 27

6.4 Scripts and Generalized Signatures

The module script implements the Bitcoin scripting language (with the excep-
tions of OP SHA1 and OP RIPEMD160). The main reason the Bitcoin script-
ing language is included is so p2sh addresses in the Bitcoin snapshot can be
redeemed. Scripts are represented by lists of integers which should be bytes.
The following functions operate on scripts:

• hash160 bytelist takes a script and computes its hash by taking the SHA256
and then RIPEMD160. The hash value returned should be interpreted
as a p2shaddr. The procedure is the same way Bitcoin computes p2sh
addresses.

• eval script evaluates a script in context. The inputs are a big integer e

(which corresponds to what is meant to be “signed”), the script s and two
stacks. The function returns the two stacks which result from evaluating
the script.

• verify p2sh compares a script’s hash against the given p2shaddr and verifies
that the script evaluates to “true.” A boolean is returned. The inputs
are a big integer e (which corresponds to what is meant to be “signed”),
a p2shaddr β and a script s. The only way true will be returned is if the
following occurs:

1. The script is evaluated and the top of the main stack is a script s1
which hashes to give β.

2. The script s1 is popped off the main stack and evaluated leaving
something nonzero at the top of the main stack.

The process of evaluating the script is more complicated than it is in Bitcoin.
The reason is that OP CHECKSIG and OP CHECKMULTISIG may be signatures by
endorsement. An endorsement may be, for example, an endorsement of a p2sh
address to a p2pkh address. In order to check the endorsement, another script
must be checked to be a valid “signature” of a different value (the hash of the
endorsement message). For this reason, the main functions that do the work:
eval script, eval script if, checksig, checkmultisig and check p2sh are mutually
recursive.

In order to account for endorsements in a uniform way, the type gensignat of
“generalized signatures” is defined. There are six constructors of type gensignat
corresponding to six ways of making a signature:

• P2pkhSignat is an ordinary cryptographic signature (r, s) corresponding to
a given public key (x, y) which may or may not be compressed. (Note that
the public key is explicitly given here and need not be recovered during
signature checking.) The public key corresponds to a p2pkhaddr (again,
one compressed and one uncompressed).

28 CHAPTER 6. CRYPTOCURRENCY OPERATIONS

• P2shSignat is a script and should be checked by calling verify p2sh above.
The script corresponds to a certain p2shaddr. (Note that the correspon-
dence is not direct. The script itself is not hashed to obtain the p2shaddr.
Instead the script should evaluate to yield a script which hashes to the
p2shaddr at the top of the main stack.)

• EndP2pkhToP2pkhSignat This is a p2pkh signature via a p2pkh endorse-
ment. This means that two public keys (and two booleans indicating
compressed or uncompressed) are given along with two signatures. One
of the signatures is of a Bitcoin message with the appropriate base 58
Qeditas pay to public key hash address, signed with the private key for
the other public key. The other signature is the signature of what should
be signed.

• EndP2pkhToP2shSignat This is a p2sh signature via an endorsement a
p2pkh endorsement. That is, a signature of a Bitcoin message with the ap-
propriate base 58 Qeditas pay to script hash address is given, correspond-
ing to the public key of the p2pkh address. Also, a script corresponding
to the p2sh address is given which “signs” what should be signed.

• EndP2shToP2pkhSignat This is a p2pkh signature via an endorsement a
p2sh endorsement. Here a script is given which “signs” the Bitcoin mes-
sage with an endorsement to a base 58 Qeditas pay to public key hash ad-
dress. An ordinary cryptographic signature (corresponding to the p2pkh
address) signing what is to be “signed” is given.

• EndP2shToP2shSignat This is a p2sh signature via an endorsement a p2sh
endorsement. Here a script is given which “signs” the Bitcoin message
with an endorsement to a base 58 Qeditas pay to script hash address. A
separate script corresponding to the other p2sh address is given which
“signs” what should be signed.

As usual, there are two functions seo gensignat and sei gensignat for serializing
generalized signatures.

There is one important function for working with generalized signatures:

• verify gensignat takes a big integer e (corresponding to the hash value
of what should be signed), a generalized signature and an address, and
returns a boolean indicating if the generalized signature verifies that the
owner of the address “signed” e. The address should be either a pay to
public key hash address or pay to script hash address. (If a term address
or publication address is given, false is returned.) Each of the six cases
is considered separately in the code, but the idea is clear: check that the
signature corresponds to the given address and check that the signature
“signs” e.

Chapter 7

Networking

The intention of the net module (net.ml and net.mli) is to create and handle
connections to remote nodes. Not everything has been implemented, but there
is enough implemented to form connections between peers and pass messages
containing inventory, transactions, block headers and block deltas.

7.1 Network Messages

There are several different message types enumerated by the type msgtype.
These largely follow the message types of Bitcoin’s messages.

• Version: used (only) in the handshake protocol, which is similar to Bit-
coin’s handshake.

• Verack: used (only) in the handshake protocol, which is similar to Bitcoin’s
handshake.

• Addr: intended to be used as in Bitcoin, but is currently unused.

• Inv: inventory message with a list of triples (m,h, k) where m is a message
type (as a byte), h is a block height (which is often irrelevant) and k is a
hash value (identifying some corresponding data).

• GetData: currently unused

• MNotFound: currently unused

• GetSTx: request a transaction with its signatures (see Chapter 10).

• GetTx: request a transaction (see Chapter 10).

• GetTxSignatures: request signatures for a transaction (see Chapter 10).

• GetHeader: request a block header (see Chapter 12).

29

30 CHAPTER 7. NETWORKING

• GetHeaders: request several block headers (see Chapter 12).

• GetBlock: request a block (currently unused, as headers and deltas are
requested independently).

• GetBlockdelta: request a block delta (see Chapter 12).

• GetBlockdeltah (deprecated)

• STx: a transaction with its signatures (see Chapter 10).

• Tx: a transaction (see Chapter 10).

• TxSignatures: signatures for a transaction (see Chapter 10).

• Block: a block (currently unused, as headers and deltas are sent indepen-
dently).

• Headers: a block header (see Chapter 12).

• Blockdelta: a block delta (see Chapter 12).

• Blockdeltah (deprecated)

• GetAddr: currently unused

• Mempool: currently unused

• Alert: currently unused

• Ping: intended to be used to ensure a connection is alive, but currently
unused.

• Pong: intended to be used to ensure a connection is alive, but currently
unused.

• Reject: currently unused

• GetCTreeElement: request an compact tree element (see Chapter 11).

• GetHConsElement: request an hcons element (see Chapter 11).

• GetAsset: request an asset (see Chapter 10).

• CTreeElement: an compact tree element (see Chapter 11).

• HConsElement: an hcons element (see Chapter 11).

• Asset: an asset (see Chapter 10).

• Checkpoint: a checkpoint (see Chapter 13).

• AntiCheckpoint: currently unused

• NewHeader: sending a newly staked header (deprecated)

7.1. NETWORK MESSAGES 31

• GetCheckpoint: request a checkpoint (see Chapter 13).

Message types can be converted to integers and strings by int of msgtype and
string of msgtype, respectively. msgtype of int computes the message type of an
integer (raising Not found if the integer is negative or greater than 36).

The function inv of msgtype computes int of msgtype for a converted message
type. For example, GetTx is converted to Tx. In general the message type is
converted from a request message type to a response message type in order to
keep up with what inventory a remote peer has advertised in relation to what
inventory has been requested.

Messages have the following format:

• Four byte magic number: 0x51656454 for testnet, 0x5165644d for mainnet.

• Either the byte 0 or the byte 1 followed by a 20 byte hash value h indicating
that the message is a reply to a specific request (identified by h).

• A byte indicating the message type (msgtype).

• Four bytes giving the length l of the payload.

• 20 bytes giving the hash of the payload.

• The payload in l bytes, which must hash (via hash160) to give the correct
hash value.

Three exceptions are exported from net:

• GettingRemoteData: indicates some data is being requested from peers
and this data is required in order to complete the current computation.
This exception is not used in net itself, but is raised by other code when
a request is sent to a peer and the computation will not wait for a reply.

• RequestRejected: indicates that a socks4 connection failed.

• IllformedMsg: indicates a message had a bad format.

The internal function rec msg reads a message from a channel, given a block
height. The block height is required to know the maximum allowed length of
a message payload (computed from maxblockdeltasize). Since the current block
height changes, there is an exposed reference netblkh which is used by connection
threads to determine the current block height. The value netblkh is updated by
code that tracks the current best block (see Chapters 13 and 15). The exception
IllformedMsg is raised by rec msg unless the message has the correct format.

The internal function send msg handles formatting and sending a message.
In particular, it is given an output channel, the hash of the payload, an optional
hash indicating what the message is a reply to, the message type and the message
payload as a string (to be interpreted as a sequence of bytes).

32 CHAPTER 7. NETWORKING

7.2 Network Connections

Network connections have a state summarized in the record type connstate con-
sisting of the following fields:

• conntime: the time the connection was created.

• realaddr: the address of the connecting socket.

• connmutex: a “mutex” to prevent race conditions when communicating
with the peer.

• sendqueue: messages on the queue to be sent by the connection sender
thread to the peer.

• sendqueuenonempty: a condition to wake up the connection sender thread
to send a message on the queue.

• handshakestep: an integer indicating the current handshake step, which
progresses to 5 at which point the handshake protocol has been completed.

• peertimeskew: the number of seconds of skew between the peers (computed
from the advertised time in the handshake).

• protvers: the protocol version advertised by the peer in the handshake.

• useragent: the user agent given by the peer in the handshake.

• addrfrom: the string giving the address the peer gave in the handshake.

• banned: a boolean which becomes true if the connection is banned due to
misbehavior.

• lastmsgtm: the time of the last message exchanged.

• pending: a list of message hashes where the peer is expected to give a
response, as well as information about how long the node has waited and
a function for handling the reply if and when it is received.

• sentinv: a list of inventory already sent to the peer

• rinv: a list of remote inventory

• invreq: a list of requested inventory

• first header height: intended to be the block height at which the peer has
headers (currently unused)

• first full height: intended to be the block height at which the peer has
block headers and deltas (currently unused)

• last height: indended to be the latest block height of the peer (currently
unused)

7.3. NETWORK LISTENER 33

All current connections are stored in the ref list netconns. Each entry of
netconns has two threads (the “connection listener” thread and the “connection
sender” thread), a file descriptor and its corresponding input and output chan-
nels, and a reference to an optional connection state (connstate). If the reference
becomes None, then the connection is considered dead.

7.3 Network Listener

If an ip address to listen for connections is given, the function openlistener

creates a listener socket waiting for connections. This listener socket is sent to
the function netlistener in its own thread upon startup (see qeditas.ml). The
variable netlistenerth contains the thread in case it is required later.

The function netlistener is an infinite loop accepting connections and remov-
ing dead connections (those with no connection state) using remove dead conns.
A connection is accepted if it is not a self-connect (as judged by the value of
this nodes nonce) and if there are fewer than maxconns connections on netconns.
An initial connection state (connstate) is created with handshakestep set to 1.
A connection listener thread is created calling connlistener and a connection
sender thread is created calling connsender. The triple of the two threads and
(a reference to the optional) connection state is added to netconns.

connsender is a loop which sends the messages on sendqueue to the peer and
then waits for the condition sendqueuenonempty. If at any time the connection
state of the connection is set to None, the thread ends. Likewise, certain excep-
tions (Unix error, End of file, ProtocolViolation, SelfConnection) result in closing
the socket, setting the connection state to None and ending the thread. All
other exceptions are logged but otherwise ignored.

connlistener is a loop which waits for messages (using rec msg) and calls han-
dle msg to handle the message. If after handling the message banned is true,
then the exception ProtocolViolation is raised. If at any time the connection
state of the connection is set to None, then the connection is considered dead
and End of file is raised. Certain exceptions (Unix error, End of file, ProtocolVi-
olation, SelfConnection) result in closing the socket, setting the connection state
to None and ending the thread. All other exceptions are logged but otherwise
ignored.

The function handle msg behaves differently depending on whether the mes-
sage is a reply. If the message is a reply to a message with hash value h, then
the associated value is looked up on the pending field of the connection state
(and removed from pending). This gives a function f which is called with the
message type and message payload. If no associated value is on pending, the
message is ignored.

If the message is not a reply, then a distinction is made based on whether
or not the connection is still in the handshake phase. If the connection is
in the handshake phase, then the message must be either a Version or Verack

message and is handled appropriately, updating the connection state. Once
the handshake protocol has been completed, handshakestep will be 5 and the

34 CHAPTER 7. NETWORKING

function given by send inv fn is called to send the initial inventory message to
the peer. (Initially, send inv fn is set to a trivial function that does nothing,
but the value is reset to the send inv function in blocktree. send inv in blocktree

gathers recent block headers, block deltas and transactions to send as inventory.)
If the connection is not in the handshake phase, then a function f to handle

the message type is looked up in the hash table msgtype handler and this f is
called on the channels, the connection state and the message payload. If there
is no handler function is found in msgtype handler, then Failure is raised.

The particular functions associated with message types in msgtype handler

are given in later modules (blocktree, ctre and assets). (The reason is that only
in later modules are the types for the deserialized data in the message available.)
In many cases, no handler is given (due to the incomplete nature of the Qeditas
implementation) meaning the messages will lead to a Failure exception being
raised.

7.4 Network Seeker

The function netseeker is used to start a thread which tries to use known peers
(from past connections stored in a peers file) or fallback nodes (see testnetfall-

backnodes and fallbacknodes) to initiate new connections. The main code is in
netseeker loop. The thread is stored in netseekerth in case it is needed later.

7.5 Other Exported Network Functions and Data

There are a few important functions called by other modules in order to com-
municate with peers.

• peeraddr: return the address of an optional given connstate as a string.

• tryconnectpeer: given an address of a peer, try to connect to the peer,
adding it to netconns if successful. Upon success, return the triple added
to netconns. Upon failure, return None.

• addknownpeer: update the hash table knownpeers to either add the new
peer or to update the latest connection time of an already known peer.

• removeknownpeer: remove a given peer from the knownpeers hash table.

• getknownpeers: iterated over the knownpeers hash table and collect the
first 1000 peers which have been active in the past week.

• loadknownpeers: load the peers file (if it exists) and add the peers which
have been active in the past week to the knownpeers hash table.

• saveknownpeers: create a new peers file consisting of the contents of the
knownpeers hash table (as a text file with the peer’s address followed by
the last time the connection was active).

7.5. OTHER EXPORTED NETWORK FUNCTIONS AND DATA 35

• BannedPeer is an exception which is raised when trying to connect to a
banned peer.

• bannedpeers is a hash table remembering the addresses of banned peers to
prevent reconnection.

• banpeer adds an address to bannedpeers.

• clearbanned removes all addresses from bannedpeers.

• network time: returns the current local time modified by the median skew
time of all connected nodes.

• queue msg: puts a non-reply message onto the sendqueue of a connection.

• queue reply: puts a reply message onto the sendqueue of a connection.

• find and send requestdata: searches through the current peers to find one
that has some desired data in its inventory (but has not already had
the data requested). If one is found, the data is requested. Otherwise,
Not found is raised.

• broadcast requestdata: request some data from all peers that have the data
in the inventory and from whom the data has not already been requested.

• broadcast inv: send an Inv (inventory) message to all peers.

36 CHAPTER 7. NETWORKING

Chapter 8

Database

For several data types we will need to manipulate persistent storage of values
indexed by a hash value. (We will call this a “database” although it is only a key-
value mapping.) One way to do this would be to use a standard library built for
this purpose, such as leveldb. However, integrating leveldb with the OCaml code
has proven challenging. Instead (at least for the moment) the database has been
implemented by simply using files in directories. The particular implementation
has been abstracted using a module type (dbtype) so that the implementation of
the module can be easily replaced. The first implementation, Dbbasic, was due to
Trent Russell in early 2016. Since Dbbasic requires many file operations (to keep
index files sorted), a modified version Dbbasic2 was added by Bill White later
in 2016. Dbbasic2 requires significantly more RAM as index files are loaded into
RAM upon initialization,1 but can simply append new keys to index files since
they do not need to remain sorted in the file. Both implementations are still
included in the db module and each database can use whichever implementation
seems more appropriate. At the moment, all use Dbbasic except the database
for headers (since this requires an additional function to iterate over keys).

The module type dbtype is actually a functor type. It depends on a signature
with

• a type t (the type of the values to be stored),

• a string basedir (indicating the top level directory where these key-value
pairs will be stored) and

• functions seival and seoval for deserializating and serializing the data
from and to channels.

An implementation of dbtype must implement the following:

• dbinit is intended to be called once, upon startup. It searches for all index
and deleted files of the database and loads the contents into hash tables.

1The initial load of the indexing data is handled by a function dbinit called at startup,
which was not in the first version of dbtype.

37

38 CHAPTER 8. DATABASE

• dbget taking a hash value (as the key) to a value of type t (or raising
Not found).

• dbexists takes a hash value (as the key) and returns true if there is an
entry with this key and returns false otherwise. (One could use dbget for
this purpose, but dbget must take the time to deserialize corresponding
the value.)

• dbput takes a hash value (as the key) and a value of type t and stores the
key-value pair.

• dbdelete takes a hash value (as the key) and deletes the entry with this
key, if one exists. If there is no entry, dbdelete does nothing.

In addition there is a module type dbtypekeyiter which requires the implemen-
tation of an extra function dbkeyiter. The function dbkeyiter applies a function
to every key in the database. This is used in practice to initialize headers on
startup.

The two functors Dbbasic and Dbbasic2 return a module implementing db-

type, given an implementation of t, basedir, seival and seoval. The im-
plementation of both Dbbasic and Dbbasic2 use subdirectories of basedir with
three files: index, data and deleted. The file data contains serializations of
the values stored in this directory and the file index contains the keys (hash val-
ues) along with integers giving the position of the corresponding data in data.
The file deleted is a list of heys (hash values) that have been marked as deleted
(but the keys are still in index and the value is still in data).

The maximum number of entries in the files in a directory is 65536, but new
entries are also not allowed after the data file exceeds 100 MB. After no more
entries are permitted in a directory, a subdirectory named using the next byte
(in hex) of the key is created (if necessary) and this subdirectory is used, unless
it is also full.

Some auxiliary functions are used:

• find in deleted checks if a key is in the deleted file of a directory.

• find in index searches for a key by loading the index file and doing a binary
search. If it is found, then the position of the value in the data file is
returned. Otherwise, Not found is raised.

• load index loads the index file as a list of pairs of hash values and positions.
This is only used by Dbbasic (not by Dbbasic2) and assumes the index file
is sorted, in which case it returns the list reverse sorted by the hash values.

• load index to hashtable takes a hash table and a directory d. Assuming an
index file is in the directory, each entry is inserted into the hash table.
That is, for each key k and integer p (giving the position of the data in
the data file in the directory), the hash table associates the key k with
the directory d and position p.

39

• count index gives the number of entries in the index file of a directory.

• load deleted to hashtable takes a hash table and a directory. Assuming a
deleted file is in the directory, each key k in the file is added to the hash
table.

• load deleted loads all the hash values (keys) in the deleted file of a direc-
tory.

• undelete removes a key from the deleted file of a directory by loading all
the deleted keys and then recreating the deleted file without given the
key.

• count deleted gives the number of entries in the deleted file of a directory.

• dbfind and dbfind a are used to search for a subdirectory where the index

file contains a given key, returning the directory and value position if one
is found. If none is found, Not found is raised.

• dbfind next space, dbfind next space a and dbfind next space b are used to
find the next appropriate subdirectory and position where a key can be
included.

• defrag cleans up by actually deleting key-value pairs which have been
deleted. (This is only called by Dbbasic.)

The implementation of Dbbasic works as follows:

• There are two hash table cache1 and cache2 which store (roughly) the
last 128 to 256 entries looked up so that these can be returned again
quickly. (When one cache has 128 entries, the other is cleared and begins to
be filled.) The internal functions add to cache and del from cache handle
adding and removing key-value pairs from the cache.

• dbget tries to find the key in the cache. If it is not in the cache, dbfind is
called to try to find a subdirectory and value position. If one is found and
the key has not been deleted, then the value is deserialized from the data
file starting at the position and returned. Otherwise, Not found is raised.

• dbexists is analogous to dbget except it does not deserialize the value if it
is found. Instead it returns true if a subdirectory and value position were
found (and the key is not marked as deleted), and returns false otherwise.

• dbput takes a key k and value v. The function dbfind is called to find
an entry for k if one exists. If one is found and it has been marked as
deleted, then undelete it. If one is found and it has not been deleted,
then simply return – as the key value pair already exists. Otherwise, call
dbfind next space to find the next subdirectory and position where the new
value can be stored (which is at the end of the data file, or 0 if no data

file yet exists). The function load index at this subdirectory is used to get

40 CHAPTER 8. DATABASE

a reverse sorted list of the current keys and positions. The list is reversed
and the new key and position are merged into the list. This new list is
stored in index replacing the previous contents. The value is deserialized
and appended to the end of the data file.

• dbdelete takes a key and uses dbfind to find a subdirectory where the cor-
responding index file contains the key. If none is found, then do nothing.
Assume a subdirectory is found. If the key is already in the deleted file
of this subdirectory, then do nothing. Otherwise, append the key to the
deleted file. If the number of deleted entries in this subdirectory exceeds
1024, then defrag is called.

The implementation of Dbbasic2 works as follows:

• A “mutex” mutexdb is created and used with a function withlock in a way
that is intended to make the code thread-safe. In particular, this should
be used when reading from or writing to database files.

• A hash table indextable is created to associate keys k with a pair (d, p)
where d is a string giving a directory which should contain a data file.
The value associated with k should be contained at position p in the data
file.

• A hash table deletedtable is created to remember which keys have been
deleted. (The corresponding values are not deleted from the data file or
index file. In principle they could be deleted by cleanup code offline.)

• The functions dbinit and dbinit a traverse the directories under the main
database directory calling loading the contents of the index files into in-

dextable and the contents of the deleted files into deletedtable.

• dbexists checks if a given key is in indextable and not in deletedtable.

• dbget finds (d, p) associated with k in indextable. If no (d, p) is found,
Not found is raised. If k is in deletedtable, Not found is raised. Otherwise,
the data starting at byte p in the data file in the directory d is deserialized
and returned.

• dbput takes a key k and value v. Suppose some (d, p) is associated with k in
indextable. If k is in deletedtable, then it is removed from deletedtable and
the corresponding entry is removed from the deleted file (using undelete).
If k is not in deletedtable, then simply return – as the key value pair already
exists. If no (d, p) is associated with k in indextable, call dbfind next space

to find the next subdirectory and position where the new value can be
stored (which is at the end of the data file, or 0 if no data file yet exists).
The new entry (k, p) is appended to the index file and the pair (d, p) is
associated with k in the indextable hash table. The value is deserialized
and appended to the end of the data file.

41

• dbdelete takes a key k and checks if a corresponding (d, p) is in indextable.
If no entry is found, then do nothing. Assume some (d, p) is found. If k is in
deletedtable, then do nothing (as it has already been deleted). Otherwise,
add k to deletedtable and append k to the deleted file of the directory d.

There is also a module Dbbasic2keyiter of module type dbtypekeyiter imple-
mented the same way as Dbbasic2 except with the additional function dbkeyiter

which takes a function f and calls it on every key in the hash table indextable

unless the key is in deletedtable.
Two simple database modules DbBlacklist and DbArchived are defined by

giving Dbbasic the type bool and base directories blacklist and archived,
respectively. DbBlacklist is intended to save keys corresponding to some black-
listed data that should not be requested from peers. DbArchived is intended
to save keys corresponding to old data the node no longer wishes to store or
receive.

Other instances of Dbbasic occur where the corresponding data types are
defined. For assets this is in assets and for (signed) transactions this is in tx (see
Chapter 10). For hcons elements and ctree elements, giving approximations of
parts of ledger trees, this is in ctre (see Chapter 11). For block deltas, this is
in block (see Chapter 12). Block headers use Dbbasic2keyiter instead of Dbbasic
so that hashes of all block headers can be processed during initialization. The
corresponding database DbBlockHeader is defined in block (see Chapter 12).

Users can change each use of Dbbasic to be Dbbasic2, as desired, and Qeditas
should still work. Note, however, that trying to change back from Dbbasic2 to
Dbbasic may not work, as the index files in the relevant database may no longer
be sorted.

42 CHAPTER 8. DATABASE

Chapter 9

Formalized Mathematics

The mathdata module contains the code for representing types, terms and proofs
and the code for type checking and proof checking. This is arguably the most
important module in Qeditas. A bug in this module could lead to non-theorems
being accepted as theorems undermining the primary purpose of the Qeditas
system. Fortunately the mathdata.ml file is not long (currently less than 1500
lines of code) and depends very little on the rest of Qeditas (using only code for
serialization and cryptographic hashing). It is intended to satisfy the de Bruijn
criterion in that the code can be manually audited to determine its correctness.
We attempt to give enough information in this chapter for someone who wishes
to undertake such an audit.

The original version of the code for this module was taken from the code
for the Egal system [3], but has since undergone extensive changes. One major
difference in the syntax is the explicit support for type variables in Qeditas.
Support for theories and signatures have also been added, and the type of docu-
ments has been modified (adding support for importing signatures and declaring
conjectures but removing all presentation level items). Additionally, the check-
ing functions are parameterized by functions to verify a term identified only by
its hash root has a type in a theory and to verify a proposition identified only
by its hash root is known to be a theorem in a theory. Such information will
be looked up in the ledger tree (see Chapter 11) by checking what is held at
corresponding term addresses. Finally, a significant portion of the Egal proof
checking code was apparently intended to avoid expanding definitions unneces-
sarily. This code has been deleted and replaced by simpler code to expand all
definitions during proof checking.

One might argue that it would be safer to use an older, established proof
checker. However, experience has shown that even established systems can
be vulnerable to “tricks” which can be used to prove what should be a non-
theorem. For example, on proofmarket.org [29] a bitcoin bounty was placed
on the proposition False in Coq [18]. In spite of the fact that Coq is an advanced

43

44 CHAPTER 9. FORMALIZED MATHEMATICS

tool used by many people for many projects, such a “proof” of False was given.1

The “proofs” were related to implementation issues rather than an inconsistency
in the underlying logic, but only the implementation will matter in a system like
Qeditas. By using a simple underlying logic (simple type theory) and isolating
the implementation in the reasonably small module mathdata it is hoped that
such apparent inconsistencies can be avoided.

The underlying logic is a form of simple type theory [5] with support for
prefix polymorphism. The basic proof calculus is natural deduction [9, 25]
with Curry-Howard style λ-terms proof terms [17]. This leads the type checker
and proof checker in mathdata to be very similar to the oldest proof checker,
AUTOMATH [7]. The logic is designed to allow for multiple theories to be
declared and for signatures to be used to import previous typed terms and
proven propositions. Of the popular proof assistants at the moment, the closest
would probably be Isabelle [22], although Isabelle follows the LCF style [13]
instead of Curry-Howard.

Note: Unit tests for the mathdata module are in mathunittests.ml in
the src/unittests directory in the testing branch. These unit tests give a
number of examples demonstrating how the functions described below should
behave. The testing branch is, however, out of date with the code in the dev

and master branches. A few examples of types, terms and proof terms used
in these unit tests are in unittestsaux.ml in the same directory. Likewise,
examples of publications (encoded versions of documents released with Egal [3])
are in testpubs1.ml and testpubs2.ml in the same directory.

Note: The Coq module MathData is intended to correspond to mathdata,
except that the checking code is omitted and left abstract.

9.1 Simple Types

Simple types (α, β) are described by the following grammar:

α, β ::= δn|o|ιn|(α → β)|(Πα)

We treat → as right associative to omit parentheses. For example, ι0 → ι0 → o

means (ι0 → (ι0 → o)). Also, we will omit parentheses in Πα since Π will always
be used above → and so no ambiguity can result.

Simple types are implemented as the inductive type tp. We describe each
constructor:

• TpVar(n) means the type variable δn, where the n should be interpreted
as a de Bruijn index [4]. For example, ΠΠδ1 → δ0 → δ1 means the type
of a function which expects two types α and β, a term of type α, a term
of type β and returns a term of type α.

• Prop means the type o of propositions.

1In fact, two different proofs were given.

9.2. TERMS AND PROPOSITIONS 45

• Base(n) means the nth base type ιn. Only finitely many base types will
be explicitly used in a theory. In fact, so far only theories using one base
type ι0 have been considered, but the support for multiple base types is
included in case it is needed later.

• TpAll(α) means Πα, binding a type variable. Only types of the form
Π · · ·Πα where α has no occurrence of a Π will be used in practice.

The functions seo tp and sei tp serialize and deserialize types.

hashtp takes a type and returns a hash value obtained by serializing the type
to a string, hashing the string, and then hashing the result tagged with 64. (The
intention of hashing tagged results is to ensure that, for example, the hash value
associated with a type will not accidentally be the same as the the hash value
associated with a term, proof or anything else.)

9.2 Terms and Propositions

Terms s, t, u are described by the following grammar:

s, t ::= xn|♯h|cn|(st)|(λαs)|(s → t)|(∀αs)|(sα)|(Λs)|(∀̂s)

Here n ranges over non-negative integers and h ranges over hash values.

Terms xn are variables, where n should be interpreted as a de Bruijn in-
dex [4]. For example, λox0 → ∀ox1 → x0 would be written as λy : o.y →
∀z : o.y → z in a named representation. A term ♯h is an abbreviation for a
term which has h as its hash root (see tm hashroot below). Note that there
are two kinds of application: (1) (st) of a term s to a term t and (2) (sα) of
a term s to a type α. Likewise there are two abstractions and two universal
quantifiers: one for the term level and one for the type level. First, (λαs) is
a term level abstraction representing a function expecting an input of type α

with return value determined by this input and s. Likewise, (∀αs) corresponds
to universally quantifying over the elements of type α. On the other hand, (Λs)
is a type level abstraction and represents a function which expects a type α

and then returns a value determined by α and s. Likewise, (∀̂s) corresponds to

universally quantifying over all types. We refer to λα, ∀α, Λ or ∀̂ collectively as
binders and say the term s in (λαs), (∀αs), (Λs) or (∀̂s) is in the scope of the
binder.

We often omit parentheses. Application is assumed to be left associative
and so sαβtu means ((((sα)β)t)u) If parenthesis around the body of a binder
are omitted, then they are assumed to be such that the scope of the binder is
as large as possible. For example, ∀ox0 → x0 means (∀o(x0 → x0)).

The corresponding type in the OCaml code is tm. We describe each con-
structor:

• DB(n) corresponds to the variable xn (i.e., the de Bruijn index).

46 CHAPTER 9. FORMALIZED MATHEMATICS

• TmH(h) corresponds to the term ♯h and should be considered an abbrevi-
ation (which is sometimes opaque and sometimes transparent, depending
on the current signature).

• Prim(n) corresponds to the primitive cn.

• Ap(s, t) corresponds to term level application st.

• Lam(α, s) corresponds to term level abstraction λαs.

• Imp(s, t) corresponds to implication s → t.

• All(α, s) corresponds to term level universal quantification ∀αs.

• TTpAp(s, α) corresponds to type level application sα.

• TTpLam(s) corresponds to type level abstraction Λs

• TTpAll(s) corresponds to type level universal quantification ∀̂s.

The functions seo tm and sei tm serialize and deserialize terms.
There are two functions hashtm and tm hashroot which take terms and return

a corresponding hash value. In the case of hashtm, a hash value is obtained by
serializing the term to a string, hashing the string, and then hashing the result
tagged with 66. This (effectively) guarantees that different terms will always be
given different hash values. On the other hand, tm hashroot takes a term and
computes its hash root . The hash root of a term does not distinguish between a
term ♯h and a term t which has h as its hash root. In effect, tm hashroot views
all such abbreviations as transparent.

The hash root TR♯(t) of a term t can be defined as follows:

• TR♯(♯h) is h

• TR♯(cn) is the hash of n tagged with 96.

• TR♯(xn) is the hash of n tagged with 97.

• TR♯(st) is the hash of the hashed pair of TR♯(s) and TR♯(t) tagged with
98.

• TR♯(λαs) is the hash of the hashed pair of the hash of α and TR♯(s)
tagged with 99.

• TR♯(s → t) is the hash of the hashed pair of TR♯(s) and TR♯(t) tagged
with 100.

• TR♯(∀αs) is the hash of the hashed pair of the hash of α and TR♯(s)
tagged with 101.

• TR♯(sα) is the hash of the hashed pair of TR♯(s) and the hash of α

tagged with 102.

9.3. PROOF TERMS 47

• TR♯(Λs) is the hash of TR♯(s) tagged with 103.

• TR♯(∀̂s) is the hash of TR♯(s) tagged with 104.

The reader can verify that this corresponds to the definition of tm hashroot in
the code. The tags are used to record which term constructor was traversed and
is also used to ensure that hash roots of terms are not the hash values computed
in other contexts.

A proposition is a certain kind of term (in a given context). In short, propo-

sitions are always of the form ∀̂ · · · ∀̂t where t has type o. Usually a proposition
is simply of the form t where t has type o.

9.3 Proof Terms

Proof terms D, E are described by the following grammar:

D, E ::= ♯̂h|Hn|�h|(Ds)|(DE)|(λsD)|(λαD)|(Dα)|(ΛD)

Here n ranges over non-negative integers and h ranges over hash values. We
sometimes simply say “proofs” instead of “proof terms.”

The proof term ♯̂h is an abbreviation for a proof term which has hash root
h (see pf hashroot below). The proof term Hn is the proof of a hypothesis (in
a hypothesis context). The proof term �h simply asserts that the proposition
with hash root h is known. (The current signature maintains a list of known
propositions and their hash root. Inclusion of such a proposition in the signature
may require checking that the term address corresponding to h is owned as a
proposition in the ledger. The only way this could have happened is if the
term is the axiom of the current theory or was previously proven.) There are
three kinds of application and three kinds of abstractions. At the proof level
there are applications (DE) and abstractions (λsD). These correspond to the
elimination and introduction rules for implication. At the term level there are
applications (Dt) and abstractions (λαD). These correspond to the elimination
and introduction rules for universal quantification. Finally at the type level
there are applications (Dα) and abstractions (ΛD). Type level application is
the way polymorphic known propositions are applied at specific types. Type
level abstraction is the way polymorphic propositions are proven.

As with terms, we omit parentheses assuming application associates to the
left and assuming abstraction (binders) have as large a scope as possible.

The corresponding type in the OCaml code is pf. We describe each con-
structor:

The functions seo pf and sei pf serialize and deserialize proof terms.
Again, there are two functions taking a proof term and returning a hash

value: hashpf and pf hashroot. The function hashpf takes a term and returns
a hash value obtained by serializing the term to a string, hashing the string,
and then hashing the result tagged with 67. This implies hashpf returns an
effectively unique hash value for each proof term. The function pf hashroot

48 CHAPTER 9. FORMALIZED MATHEMATICS

computes a hash root similar to the way hash roots for terms are computed. In
this case, the hash root for a proof term abbreviation ♯̂h is h.

9.4 Publications

There are three kinds of publications: theories, signatures and documents. A
theory declares the types of some primitives cn and gives some axioms. A
signature is to be interpreted within a given theory and is intended to make
some terms and propositions accessible for use within another publication (a
document or another signature). A signature declares some parameters (opaque
terms of the form ♯h) giving the hash root and the simple type, declares some
definitions and declares some propositions to be known (either axioms of the
theory or previously proven propositions). A document is similar to a signature
except proofs of theorems are also allowed. In addition, a document may declare
a proposition to be a conjecture.

For all three kinds of publications there is a representation as a list of
“items.” This list is perhaps best thought of as being in reverse order. The
idea is that after one has processed the “rest” of the list, then one has sufficient
information to process the “head” of the list.

In practice there is a distinction between the specification of a theory and the
theory itself. The same is true of signatures. In essence a theory specification
or signature specification corresponds to a list of declarations, where a theory
or signature itself is a “compiled” format which other publications may used.
This “compiled” format must be stored by every node in order to check later
publications. For this reasons, Qeditas currency units must be burned in order
to publish a theory or publication. In particular, 21 zerms must be burned for
each byte in the serialized representation of the theory or signature. The idea
behind a fee of 21 zerms is that since there is an upper bound of 21 million
fraenks (21 billion zerms) we can be sure that no more than 1 GB worth of
theories and signatures will ever be published.

9.4.1 Theories

A theory item is one of the following:

• a declaration of a primitive to have type α,

• a declaration of a definition of type α defined by a term s, or

• a declaration of proposition s as an axiom.

A theory specification is a list of theory items.

A theory T is a pair (P,A) of a list P of simple types α0, . . . , αn−1 and a
list A of hash values h. The idea is that the primitive ci has the type αi for
i < n and that s is an axiom of the theory if TR♯(s) is in the list h.

9.4. PUBLICATIONS 49

In the OCaml code the corresponding types are theoryitem, theoryspec and
theory. The type theoryitem has three constructors corresponding to the three
cases above.

• ThyPrim(α) declares that the primitive cn has type α. In practice n is the
number of ThyPrim theory items in the rest of the theory specification.

• ThyDef(α, s) declares that s has type α and so ♯TR♯(s) can be used as an
abbreviation.

• ThyAxiom(t) declares that t is a proposition and an axiom of the theory.

As usual, seo theoryspec and sei theoryspec serialize and deserialize theory spec-
ifications while seo theory and sei theory serialize and deserialize theories.

The function theoryspec theory converts a theory specification to a theory.
This is done by extracting the declared types of the first n primitives (see
theoryspec primtps) and by extracting the hash roots of declared axioms (see
theoryspec hashedaxioms). The pair is the intended theory. Note that declared
definitions are not used to construct the theory. Definitions in a theory may be
required to check the theory specification is valid (e.g., to check that a term for
an axiom is, in fact, a proposition).

The function hashtheory computes an optional hash value corresponding to
a theory. This hash value will be the identifier for the theory. For the empty
theory (no typed primitives and no axioms) the optional hash value will be None.
The empty theory is not explicitly stored and cannot be explicitly published.
For nonempty theories, the hash value is used to determine the 160-bit location
where the theory is stored in the ttree and the publication address where the
theory specification is stored in the ledger tree.2

The function theoryspec burncost computes the number of cants that must
be burned to publish the theory specification. It does this by computing the un-
derlying theory with theoryspec theory, serializing the theory, taking the number
of bytes of the serialization and multiplying this by 2.1 billion).

9.4.2 Signatures

A signature item is one of the following:

• a reference to another signature to import,

• a declaration of a parameter with a given term hash root and given type,

• a declaration of a definition with a certain type and a term which should
have this type, or

2There is actually no need to store theory publications in the ledger tree since the useful
information will be in the ttree. However, it seems simplest to publish theory specifications
as a special kind of asset created by a transaction. Such assets are stored in the ledger tree
at the given address. Making an exception for theories (and signatures) would be needlessly
awkward.

50 CHAPTER 9. FORMALIZED MATHEMATICS

• a declaration of a proposition as known.

A signature specification is a list of signature items.
A global signature Σ is a pair (O,K) of lists:

• The first list O is a list of hash roots, types and optionally terms. That is,
each element is (h, α,None) or (h, α, s) where h is the term hash root of a
term of type α (the term s if it is given). The intention is that we know
the term ♯h abbreviates a term of type α. If s is given, we also know ♯h
can be expanded to be s.

• The second list K is a list of hash roots and terms. That is, each element
is (h, s) where s has hash root h and s is either an axiom of the theory
or a previously proven theorem. (Technically, it is h that is the hash root
of an axiom or previously proven theorem. Hence we know s is equal to
an axiom or previously proven theorem if all hash value abbreviations are
expanded.)

A signature is a pair of a list of hash values and a global signature. The list
of hash values is a list of references to other signatures to import. A signature
here is a certain kind of publication which allows easy importation of previous
results and should not be confused with cryptographic signatures as discussed
in Chapter 6. In the OCaml code we typically write signat when referring to
cryptographic signatures and signa when referring to the kinds of signatures as
publications under consideration here.

The corresponding types in OCaml are signaitem (for signature item), sig-
naspec (for signature specification), gsigna (for global signature) and signa (for
signature). The type sigitem has four constructors corresponding to the four
cases above.

• SignaSigna(h) declares the importation of the signature with hash value
identifier h. The signature must have been previously published.

• SignaParam(h, α) declares that ♯h has type α and can be used as an opaque
abbreviation (a “parameter”).

• SignaDef(α, s) declares that s has type α and so ♯TR♯(s) can be used as
an abbreviation.

• SignaKnown(t) declares that t is a proposition which is already known.

As usual, seo signaspec and sei signaspec serialize and deserialize signature spec-
ifications. seo signa and sei signa serialize and deserialize signatures.

The function signaspec signa compiles a signature specification into a signa-
ture. The function signaspec signas computes the signatures which should be
imported by filtering out the declared signatures to import. The function sig-

naspec trms computes the term hash roots along with their types and optional
term definitions by filtering out the parameter and definition declarations. Fi-
nally, signaspec knowns computes the term hash roots and corresponding known
propositions by filtering the declared knowns and computing their hash roots.

9.4. PUBLICATIONS 51

The function hashsigna computes a hash value to identify the signature. This
hash value, combined with the hash value identifier of the intended theory, is
used to create both the 160-bit location where the signature is stored in the
stree and the publication address where the signature specification is stored in
the ledger tree.3

The function signaspec burncost computes the number of cants which must
be burned to publish the signature specification. It does this by computing the
underlying signature with signaspec signa, serializing the signature, taking the
number of bytes of the serialization and multiplying this by 2.1 billion).

9.4.3 Documents

A document item is one of the following:

• a declaration of a signature to import,

• a declaration of a parameter with a term hash root and type,

• a declaration of a definition with a type and a term of this type,

• a declaration of a proposition as known,

• a declaration of a proposition as a conjecture, or

• a declaration of a proposition as a theorem with a proof.

A document is a list of document items.

The corresponding OCaml types are docitem and doc. The type docitem has
six constructors corresponding to the six cases above.

• DocSigna(h) declares the importation of the signature with hash value
identifier h. The signature must have been previously published.

• DocParam(h, α) declares that ♯h has type α and can be used as an opaque
abbreviation (a “parameter”).

• DocDef(α, s) declares that s has type α and so ♯TR♯(s) can be used as an
abbreviation.

• DocKnown(t) declares that t is a proposition which is already known.

• DocConj(t) declares that t is a proposition to be treated as a conjecture.

• DocPfOf(t,D) declares that t is a proposition proven by the proof term
D.

3As with theories, there is actually no need to store signature publications in the ledger
tree since the useful information will be in the stree. Signature specifications are stored in the
ledger tree simply to avoid having exceptional cases.

52 CHAPTER 9. FORMALIZED MATHEMATICS

As always, seo doc and sei doc serialize and deserialize documents.
There are two functions computing hash values for documents. The function

hashdoc computes a unique hash value for each distinct document. This hash
value is used to calculate the publication address where the document will be
stored in the ledger tree. The function doc hashroot computes a hash root for a
document. This is done by combining hash roots for document items computed
by docitem hashroot.

The purpose of hash roots for documents is to allow for the representation
of parts of the document in a way that still allow the hash root to be computed
(as with any Merkle tree [19]). The type pdoc is the type of partial documents .
Partial documents are an approximation of a document nodes can use for proof
of storage in a block header.

The functions seo pdoc and sei pdoc serialize and deserialize partial docu-
ments.

There are again two functions computing hash values. The function hashp-

doc computes a unique hash value for each partial document. This is used to
compute the hash of the block header in case a partial document is used for
proof of storage. The function pdoc hashroot computes the hash root of the
partial document. If a partial document approximates a document, then both
will have the same hash root.

9.5 Dependency Checking

There are a number of functions for computing the dependencies of signatures
and documents on objects and propositions. In some cases the functions are
used to check if the publisher has the right to use the object or proposition. In
other cases the functions are used to justify the publisher claiming ownership
of an object or proposition. Ownership of an object or proposition allows the
control of the right to use the object or proposition later. Finally, some of the
functions compute the hash values used to check the ledger tree to see if a term
with a given hash root has a given type in a given theory or if a proposition
with a given hash root is known in a given theory.

• signaspec uses objs collects the parameters (SignaParam) imported into a
signature as pairs (h, k) where h is the hash root of the (omitted) term
defining the parameter and k is the hash of the type (given by hashtp). It
is defined via a tail recursive function signaspec uses objs aux which also
ensures the list is duplicate free. This information is needed to check that
there is in fact a previously published term with hash root h with the type
with hash k in the appropriate theory. It is also needed to check that the
publisher has the right to make use of the parameter in this way. The
function is used in output signaspec uses objs in the assets module where
(h, k) is converted into a pair (h, k′) where k′ depends on h, k and the
(optional) hash value identifier of the theory. The idea is that h is the
identifier of the “pure” object (across all theories) while k′ is the identifier

9.5. DEPENDENCY CHECKING 53

of the object in the specific theory. Both h and k′ can be owned as objects.
In order to use an object as a parameter in a signature, both h and k′ must
be free to use as objects (without requiring rights). After an object has
been published in a signature, every signature and document can freely
use everything in the signature simply by importing it.

• signaspec uses props collects the hash roots of the known propositions
(SignaKnown) imported into a signature. It is defined via a tail recursive
function signaspec uses props aux which also ensures the list is duplicate
free. This information is needed to check that there is in fact a proposition
with hash root h was previously published with a proof in the appropri-
ate theory (or that there is a corresponding axiom of the theory). It is
also needed to check that the publisher has the right to make use of the
known in this way. The function is used in output signaspec uses props in
the assets module where h is converted into a pair (h, k) where k depends
on h and the (optional) hash value identifier of the theory. The idea is
that h is the identifier of the “pure” proposition (across all theories) while
k is the identifier of the proposition in the specific theory. Both h and k

can be owned as propositions. In order to use a proposition as a known
in a signature, both h and k must be free to use as propositions (without
requiring rights). After a proposition has been published in a signature,
every signature and document can freely use everything in the signature
simply by importing it.

• doc uses objs is similar to signa uses objs except it collects parameter dec-
larations in documents (DocParam). It is used in output doc uses objs in
the assets module to collect (h, k) where h is the identifier for the “pure”
object and k is the identifier for the object in the relevant theory. In
order to use the object in the document as a parameter, the transaction
publishing the document is required to consume a sufficient number of
object rights. The cost of obtaining rights (which may range from “free”
to “impossible”) is determined by the owners of h and k as objects.

• doc uses props is similar to signa uses objs except it collects parameter
declarations in documents (DocKnown). It is used in output doc uses props

in the assets module to collect (h, k) where h is the identifier for the
“pure” proposition and k is the identifier for the proposition in the relevant
theory. In order to use the proposition in the document as a known, the
transaction publishing the document is required to consume a sufficient
number of proposition rights. The cost of obtaining rights (which may
range from “free” to “impossible”) is determined by the owners of h and
k as propositions.

• doc creates objs collects definitions (DocDef) as pairs (h, k) where h is the
hash root of the term and k is the hash of the type. This is modified in
output creates objs in the module assets to be (h, k′) where k′ depends on
h, k and the (optional) hash value identifier of the theory. Again, h is the

54 CHAPTER 9. FORMALIZED MATHEMATICS

identifier for the “pure” object (across all theories) and k′ is the identifier
for the object in the specific theory. If a document creates objects which
are not yet owned as objects, then an owner must be declared with the
transaction publishing the document. (The fact that an identifier for an
object in a specific theory has an owner as an object implies that the term
has the type in the theory. Hence it can later be safely imported as a
parameter of the appropriate type in the theory.)

• doc creates props collects the hash roots of proven propositions (DocPfOf).
Each hash root h is modified in output creates props in the module assets

to be a pair (h, k) where k depends on the theory. Again, h is the identifier
for the “pure” proposition (across all theories) and k is the identifier for
the proposition in the theory. If a document creates propositions which
are not yet owned as propositions, then an owner must be declared with
the transaction publishing the document. (The fact that an identifier for
a proposition in a specific theory has an owner as a proposition implies
that the proposition has been proven in the theory. Hence the proposition
can safely be imported as something known in the theory.)

• doc creates neg props collects the hash roots of propositions p where the
negation of p is proven in the document. (Here the negation of p is ei-
ther p → ∀ox0, i.e., p implies false, or ¬p where ¬ is λox0 → ∀ox0.) In
output creates neg props in the module assets combines the hash root with
the theory to obtain an identifier for the proposition in the theory. If a
document proves the negation of a proposition, then the OwnsNegProp

preasset must be published into the corresponding identifier. The pur-
pose of OwnsNegProp is to allow the collection of bounties by proving the
negation of a proposition instead of the original proposition. This makes
sense as in a consistent theory proving either a proposition or its negation
resolves the conjecture.

9.6 Trees of Theories and Signatures

In order to check the correctness of a signature specification or document, the
intended theory is required. Likewise, correctness of the new signature specifi-
cation or document depends on all signatures imported. For this reason, each
Qeditas node needs to store every theory and every signature published so far in
order to verify the correctness of new signature specifications and documents.
Theories and signatures are stored in trees indexed by their associated hash
values. The polymorphic type htree in the module htree provides the general
infrastructure. The two special cases are ttree and stree. A ttree is simply an
htree for storing theories (elements the type theory). An stree is an htree for
storing signatures (elements the type signa). Each signature is associated with
a specific theory (possibly the empty theory) and can only be imported into
signature specification and documents within the same theory. This is enforced

9.7. SUBSTITUTION AND NORMALIZATION 55

by storing the signature by an index that depends on the hash value identifier
of the theory.

• ottree insert takes an optional ttree, a bit sequence and a theory and re-
turns the ttree resulting from inserting the theory at the location of the bit
sequence. Giving None instead of a ttree corresponds to starting with the
empty ttree, and so the returned ttree will have exactly one entry. The bit
sequence should be the 160-bit hash returned by hashtheory when called
on the given theory.

• ostree insert takes an optional stree, a bit sequence and a signature and
returns the stree resulting from inserting the signature at the location of
the bit sequence. Giving None instead of a stree corresponds to starting
with the empty stree, and so the returned stree will have exactly one entry.
The bit sequence should be the 160-bit hash returned by hashopair2 on the
optional hash value identifying the intended theory and the hash value
returned by hashsigna when called on the given signature.

• ottree hashroot returns an optional hash value representing the Merkle root
of an optional ttree. This value is sometimes called the theory root and
is in block headers as newtheoryroot. Before the first theory is published,
the optional ttree is None and the corresponding hash root is also None.

• ostree hashroot returns an optional hash value representing the Merkle
root of an optional stree. This value is sometimes called the signature
root and is in block headers as newsignaroot. Before the first signature is
published, the optional ttree is None and the corresponding hash root is
also None.

• ottree lookup lookups a theory in an optional ttree given its optional hash
value identifier. If the optional hash value identifier is None, no lookup
is performed: the empty theory is returned. Otherwise, the hash value is
converted to a bit sequence (list of booleans) and htree lookup attempts to
find the theory in the tree. If no entry is found, the exception Not found

is raised.

Note that there is no ostree lookup. The internal function import signatures looks
up signatures as they are required.

9.7 Substitution and Normalization

Type checking and proof checking depend on substitution and βη-normalization.
The functions implementing substitution and βη-normalization are not exposed
in the interface, but it is of fundamental importance that they are bug-free.
Substitutions and normalization can also be defined for proof terms, but this is
not necessary for Qeditas.

56 CHAPTER 9. FORMALIZED MATHEMATICS

Defining substitution requires auxiliary functions to shift de Bruijn indices.
For example, suppose we wish to substitute a term x0 → x1 for the de Bruijn
index x0 in the term

x0 → ∀ox1 → x0

– i.e., x0 → (∀o(x1 → x0)). Naively one might expect the result to be

(x0 → x1) → ∀ox1 → (x0 → x1)

but this is incorrect. The first occurrence of x0 is “free” and should be replaced
by x0 → x1. However, the second occurrence of x0 corresponds to the ∀o binder
and so is not “free.” On the other hand, x1 inside the scope of the ∀o binder
corresponds to x0 outside the scope of the ∀o binder. This might lead one to
believe the resulting term should be

(x0 → x1) → ∀o(x0 → x1) → x0.

This is, however, also incorrect as the new x0 and x1 instead the scope of the
∀o binder no longer correspond to x0 and x1 outside the scope of the ∀o binder.
The correct result would be

(x0 → x1) → ∀o(x1 → x2) → x0.

That is, shifting of de Bruijn indices is required when the substitution procedure
passes through a binder.

We say an occurrence δn of a type variable (in a term or type) is locally

bound for i if it is beneath j type level binders (Π, Λ or ∀̂) where n < i + j.
Likewise we say an occurrence of xn of a term variable (in a term) is locally
bound for i if it is beneath j term level binders (λα or ∀α) where n < i+ j. We
will simply say “locally bound” when the intended i is clear.

We write T ⇑j
i as notation for the term or type where each δn is shifted to

δn+j unless it is locally bound for i. We write t ↑ji as notation for the term
t where each xn are shifted to xn+j unless it is locally bound for i. We write
T [i := S] as notation for the result of substituting a type or term S for the
variable δi or xi in the type or term T .

Returning to the example above, we can outline the necessary calculations
in order to compute

(x0 → ∀ox1 → x0)[0 := x0 → x1]

as follows:

(x0 → ∀ox1 → x0)[0 := x0 → x1]

= (x0[0 := x0 → x1]) → ((∀ox1 → x0)[0 := x0 → x1])

= (x0 → x1) → ∀o((x1 → x0)[1 := x0 → x1])

= (x0 → x1) → ∀o((x1[1 := x0 → x1]) → (x0[1 := x0 → x1]))

= (x0 → x1) → ∀o((x0 → x1) ↑
1
0) → x0

= (x0 → x1) → ∀o(x1 → x2) → x0

9.7. SUBSTITUTION AND NORMALIZATION 57

We briefly describe the internal functions for shifting and performing substi-
tutions at the different levels. For these functions to behave as mathematically
intended, we need to assume that for each occurrence of ♯h h is the hash root
of a term where every occurrence of a variable is locally bound (also called a
closed term).

• tpshift defines α ⇑j
i for shifting type variables in a type α. The defining

cases are:

– δk ⇑j
i= δk if k < i. In particular, locally bound type variables are

not shifted.

– δk ⇑j
i= δk+j if k ≥ i.

– (α → β) ⇑j
i= (α ⇑j

i→ β ⇑j
i).

– (Πα) ⇑j
i= Π(α ⇑j

i+1). The idea in this case is that passing through
the Π binder means one more type variable is considered locally
bound.

– α ⇑j
i= α otherwise.

• tmtpshift defines t ⇑j
i for shifting type variables in a term t. The defining

cases are:

– (st) ⇑j
i= (s ⇑j

i)(t ⇑
j
i).

– (λαt) ⇑
j
i= λ

α⇑
j
i
(t ⇑j

i). The term level λα binder does not affect which

type variables are locally bound.

– (s → t) ⇑j
i= (s ⇑j

i) → (t ⇑j
i).

– (∀αt) ⇑
j
i= ∀

α⇑
j
i
(t ⇑j

i). The term level ∀α binder does not affect which

type variables are locally bound.

– (sα) ⇑j
i= (s ⇑j

i)(α ⇑j
i).

– (Λt) ⇑j
i= Λ(t ⇑j

i+1). The type level Λ binder means one more type
variable is locally bound.

– (∀̂t) ⇑j
i= ∀̂(t ⇑j

i+1). The type level ∀̂ binder means one more type
variable is locally bound.

– t ⇑j
i= t otherwise. In particular, ♯h ⇑j

i= ♯h. Assuming h is the hash
root of a term s where every type variable is locally bound, then
s ⇑j

i= s and h is still the term root of s ⇑j
i .

• tmshift defines t ↑ji for shifting term variables in a term t. The defining
cases are:

– xk ↑ji= xk if k < i.

– xk ↑ji= xk+j if k ≥ i.

– (st) ↑ji= (s ↑ji)(t ↑
j
i).

58 CHAPTER 9. FORMALIZED MATHEMATICS

– (λαt) ↑
j
i= λα(t ↑

j
i+1). The term level λα binder makes one more term

variable locally bound.

– (s → t) ↑ji= (s ↑ji) → (t ↑ji).

– (∀αt) ↑
j
i= ∀α(t ↑

j
i+1). The term level ∀α binder makes one more term

variable locally bound.

– (sα) ↑ji= (s ↑ji)α.

– (Λt) ↑ji= Λ(t ↑ji). The type level Λ binder does not change which
term level variables are locally bound.

– (∀̂t) ↑ji= ∀̂(t ↑ji). The type level ∀̂ binder does not change which term
level variables are locally bound.

– t ↑ji= t otherwise. In particular, ♯h ↑ji= ♯h. Assuming h is the hash
root of a term s where every term variable is locally bound, then
s ↑ji= s and h is still the term root of s ↑ji .

• tpsubst defines α[j := β] for types α and β. The defining cases are:

– δj [j := β] = β ⇑j
0. In the special case where j = 0 we know β ⇑j

0= β

and so we can simply take δ0[0 := β] = β.

– δi[j := β] = δi−1 if i > j. This corresponds to the “removal” of the
variable δj during the substitution.

– (α1 → α2)[j := β] = (α1[j := β]) → (α2[j := β])

– (Πα)[j := β] = (Π(α[j + 1 := β]))

– α[j := β] = α otherwise.

• tmtpsubst defines s[j := β] for terms s and types β. The defining cases
are:

– (st)[j := β] = (s[j := β])(t[j := β]).

– (λαt)[j := β] = λα[j:=β](t[j := β]). The term level λα binder does
not affect which type variables are locally bound.

– (s → t)[j := β] = (s[j := β]) → (t[j := β]).

– (∀αt)[j := β] = ∀α[j:=β](t[j := β]). The term level ∀α binder does
not affect which type variables are locally bound.

– (sα)[j := β] = (s[j := β])α.

– (Λt)[j := β] = Λ(t[j + 1 := β]). The type level Λ binder means one
more type variable is locally bound.

– (∀̂t)[j := β] = ∀̂(t[j + 1 := β]). The type level ∀̂ binder means one
more type variable is locally bound.

– t[j := β] = t otherwise. In particular, ♯h[j := β] = ♯h. Assuming h is
the hash root of a term s where every type variable is locally bound,
then s[j := β] = s and h is still the term root of s[j := β].

9.7. SUBSTITUTION AND NORMALIZATION 59

• tmsubst defines s[j := u] for terms s and u. The defining cases are:

– xj [j := u] = u ↑j0. In the special case where j = 0 we know u ↑j0= u

and so we can simply take x0[0 := u] = u.

– xi[j := u] = xi−1 if i > j. This corresponds to the “removal” of the
variable xj during the substitution.

– (st)[j := u] = (s[j := u])(t[j := u]).

– (λαt)[j := u] = λα(t[j + 1 := u]). The term level λα binder makes
one more term variable locally bound.

– (s → t)[j := u] = (s[j := u]) → (t[j := u]).

– (∀αt)[j := u] = ∀α(t[j + 1 := u]). The term level ∀α binder makes
one more term variable locally bound.

– (sα)[j := u] = (s[j := u])α.

– (Λt)[j := u] = Λ(t[j := u]). The type level Λ binder does not change
which term level variables are locally bound.

– (∀̂t)[j := u] = ∀̂(t[j := u]). The type level ∀̂ binder does not change
which term level variables are locally bound.

– t[j := u] = t otherwise. In particular, ♯h[j := u] = ♯h. Assuming h is
the hash root of a term s where every term variable is locally bound,
then s[j := u] = s and h is still the term root of s[j := u].

Next we need to say what it means for a type variable δj to be free in a type
or term, and what it means for a term variable xj to be free in a term. There
are three relevant definitions:

• The function free tpvar in tp p determines if a type variable δj is free in a
type α. The definition is by recursion on α and the j must be increased
by 1 in the Π binder case to account for the new locally bound variable.

• The function free tpvar in tm p determines if a type variable δj is free in
a term t. The definition is by recursion on t and the j must be increased
by 1 in the Λ and ∀̂ binder cases.

• The function free in tm p determines if a term variable xj is free in a term
t. The definition is by recursion on t and the j must be increased by 1 in
the λα and ∀α binder cases.

We can now turn to βη-normalization. We begin by considering four kinds
of redexes and their corresponding reducts . Normalization is performed by re-
ducing redexes to their reducts until no more redexes remain. A theorem of
various type theories is that normalization terminates in a unique normal form
for well-typed terms, and that is true for the type theory under consideration
here.

• A term of the form (λαs)t is a term level β-redex with reduct s[0 := t].

60 CHAPTER 9. FORMALIZED MATHEMATICS

• A term of the form (Λs)α is a type level β-redex with reduct s[0 := α].

• A term of the form λα(sx0) where x0 is not free in s is a term level η-redex
with reduct s ↑−1

0 . (The shift of term variables by −1 is required since s

was in the scope of one term level binder λα which is removed from the
reduct.)

• A term of the form Λ(sδ0) where δ0 is not free in s is a type level η-redex
with reduct s ⇑−1

0 . (The shift of type variables by −1 is required since
s was in the scope of one type level binder Λ which is removed from the
reduct.)

A term is normal if it has no redexes. The function tm norm p checks if a term
is normal. In theory specifications, signature specifications and documents all
definitions, knowns, conjectures and theorems are required to be normal. The
exception NonNormalTerm is raised if this requirement is violated.

The normalization procedure is tm beta eta norm. It proceeds by repeatedly
calling tm beta eta norm 1. In simple terms, the function tm beta eta norm 1 re-
cursively traverses a term reducing each redex it finds and returning the reduced
term along with a boolean indicating if at least one reduction was performed. If
no reductions were performed, then the term is normal and the procedure ends.

In certain examples, β-normalization (and hence βη-normalization) leads to
large terms and can require an unrealistic number of β-reductions. This prob-
lem is dealt with by having resource bounds represented internally by beta count

and term count. Before a signature specification or document is checked, these
resource bounds are reset (by reset resource limits). (Checking a theory speci-
fication requires no β-reductions.) There are 200, 000 beta reductions and 10
million term traversal steps allowed per signature specification or document.
Each β-reduction step decrements beta count by one. If beta count reaches 0,
then the exception BetaLimit is raised. For each recursive call of a shift or
substitution function decrements term count. If term count reaches 0, then the
exception TermLimit is raised. If either of these exceptions are thrown, it es-
sentially means that checking the signature specification or document is too
resource intensive and it cannot be published in its current form. If this occurs,
a possible solution is to factor the publication into multiple publications.

It is worth noting that some well-known ill-typed terms do not have a normal
form. For example, (λox0x0)(λox0x0) is a term level β-redex with itself as a
reduct. Without resource bounds, calling tm beta eta norm with this term would
result in an infinite loop. With the resource bound, BetaLimit would be raised.
In practice, tm beta eta norm should never be called with such a term since
during the checking of publications tm beta eta norm is only called with terms
which are already known to be well-typed.

We write [s]↓ for the βη-normal form of s, assuming it exists.

9.8. TYPE CHECKING AND PROOF CHECKING 61

i < v

v ⊢ δi stp

v ⊢ α stp v ⊢ β stp

v ⊢ α → β stp

v ⊢ α stp

v ⊢ α ptp

v + 1 ⊢ α ptp

v ⊢ Πα ptp

Figure 9.1: Rules for validity of types

9.8 Type Checking and Proof Checking

We now turn to the most important functions: those which check that a type
is valid, check that a term has a type, check that a term is a proposition, and
check that a proof term is a proof of a proposition.

Checking attempts typically either succeed (possibly returning some infor-
mation) or raise an exception. The exception CheckingFailure is raised if check-
ing fails. One of the exceptions BetaLimit or TermLimit is raised if one of the
corresponding resource bounds is reached.

All the properties defined will be relative to a type context . Since type
variables are represented as de Bruijn indices, the type context can be taken to
simply be a non-negative integer v.

We say a type α is valid as a simple type in type context v (and write
v ⊢ α stp) if it contains no occurrence of Λ and every type variable δi satisfies
i < v. The function check tp performs this check. A type α is valid as a
polymorphic type in type context v (and write v ⊢ α ptp) if if it is of the form

Λ · · ·Λ
︸ ︷︷ ︸

m

β

where β is valid as a simple type in type context v+m. The function check ptp

performs this check.
Properties such as these are often defined using rules. One can often under-

stand the functions checking the properties better by comparing them to such
rules. Rules defining v ⊢ α stp and v ⊢ α ptp are given in Figure 9.1.

The notion of types being valid is independent of the theory or a signature.
It would make sense to restrict types to only mention base types mentioned in
the current theory, but there is no strong reason to do so. For simplicity, we
ignore the theory when asking if a type is valid.

The property of when a term has a type depends on both a type context
and a term context . A term context Γ is a list of types α0, . . . , αm−1 giving the
types of the term level de Bruijn indices in the current context. We write Γ ⇑j

i

for the term context α0 ⇑j
i , . . . , αm−1 ⇑j

i when Γ is α0, . . . , αm−1.
We now define Σ; v; Γ ⊢ t : α – i.e., when a term t has type α in a signature Σ,

type context v and term context Γ. The definition also depends on the current
theory, but we will leave this implicit in the notation. Suppose the current
theory assings the types γ0, . . . , γn−1 to the first n primitives. This information
is needed to know ci : γi for i < n. (The corresponding function is tp of prim.)
Rules defining Σ; v; Γ ⊢ t : α are given in Figure 9.2.

62 CHAPTER 9. FORMALIZED MATHEMATICS

Γ = α0, . . . , αm−1 i < m

Σ; v; Γ ⊢ xi : αi

i < n

Σ; v; Γ ⊢ ci : γi

Σ = (O,K) (h, α, d) ∈ O

Σ; v; Γ ⊢ ♯h : α

Σ; v; Γ ⊢ s : α → β Σ; v; Γ ⊢ t : α

Σ; v; Γ ⊢ st : β

Σ; v;α,Γ ⊢ s : β

Σ; v; Γ ⊢ λαs : α → β

Σ; v; Γ ⊢ s : o Σ; v; Γ ⊢ t : o

Σ; v; Γ ⊢ s → t : o

Σ; v;α,Γ ⊢ s : o

Σ; v; Γ ⊢ ∀αs : o

Σ; v; Γ ⊢ s : Πα v ⊢ β stp

Σ; v; Γ ⊢ sβ : α[0 := β]

Σ; v + 1; Γ ⇑1
0⊢ s : α

Σ; v; Γ ⊢ Λs : Πα

Figure 9.2: Rules for typing terms

Σ; v; · ⊢ s : o

Σ; v ⊢ s polyprop

Σ; v + 1 ⊢ s polyprop

Σ; v ⊢ ∀̂s polyprop

Figure 9.3: Rules for when terms are polymorphic propositions

There are two mutually recursive functions extr tpoftm and check tpoftm to
check Σ; v; Γ ⊢ t : α. The function extr tpoftm is not given the type α and
extracts the type α, returning it upon success. The function check tpoftm is
given the α and ensures it matches the extracted type.

In simple type theory a term is often called a “proposition” in a given con-
text when it has type o This will be true here, but we will have additional
polymorphic propositions of the form

∀̂ · · · ∀̂
︸ ︷︷ ︸

m

s

where s has type o in the empty context. The restriction considering such
propositions in the empty context is to ensure that all ∀̂ type binders occur
before term level binders. We can define Σ; v ⊢ s polyprop meaning s is a
polymorphic proposition (under the signature Σ and type context v) by the rules
in Figure 9.3. We then define Σ; v; Γ ⊢ s prop meaning s is a proposition (under
the signature Σ, type context v and term context Γ) to mean Σ; v ⊢ s polyprop
or Σ; v; Γ ⊢ s : o.

The function check polyprop implements the check for polymorphic proposi-
tionhood and check prop implements the check for propositionhood.

In order to determine if a proof term proves a given proposition, it is nec-
essary to consider the proposition up to βη-reductions and expansion of defini-
tions in Σ. Expansion of definitions is sometimes called δ-reduction. That is,

9.9. PUBLICATION CHECKING 63

if Σ = (O,K) is a global signature and (h, α, s) ∈ O, then ♯h is a δ-redex with
δ-reduct s. We write [s]Σ for the δ-normal form of s, assuming it exists. (If
there were cycles in the definitions in Σ, then δ-reduction would not terminate.
In practice, signatures will not have such cycles.) Note that δ-reduction may
(and often will) introduce new β-redexes. However, βη-reduction never intro-
duces new δ-redexes. Hence we can compute the βηδ-normal form of s by first
computing [s]Σ and then computing the βη-normal form. We denote this βηδ-
normal form by [s]Σ↓. In the special case where we know s is δ-normal already,
then [s]Σ↓ is the same as [s]↓ (the βη-normal form of s).

An easy way to consider terms up to βηδ-reduction is to simply always
normalize the terms. This is what the code does when trying to determine if a
proof term proves a proposition.

The function tm delta norm computes [s]Σ and the function tm beta eta delta norm

computes [s]Σ↓.
The property of when a proof term is a proof of a given proposition de-

pends on a type context, a term context and a hypothesis context . A hypothesis
context Φ is a list ρ0, . . . , ρk−1 of terms giving the current assumed hypotheses
(proof level de Bruijn indices in the proof term). We will only work with hy-
pothesis contexts where each hypothesis ρ is βηδ-normal. We will also ensure
that the terms are of type o (and not, for example, more general polymorphic
propositions).

Let Φ be ρ0, . . . , ρk−1. We write Φ ↑ji for the hypothesis context ρ0 ↑ji
, . . . , ρk−1 ↑ji when Φ is ρ0, . . . , ρk−1.

We now define when a proof term proves a proposition, given a signature
and appropriate contexts. We denote this relation by Σ; v; Γ; Φ ⊢ D : t and
define it by the rules in Figure 9.4. Note that in each rule, we ensure that the
proposition t is βηδ-normal (assuming every proposition in Φ is βηδ-normal).
Also note that proof terms for polymorphic propositions which are not of type
o (i.e., have at least one ∀̂ binder) must either be known �h or must be proven
in the empty term and hypothesis contexts.

Like with type checking, there are two mutually recursive functions extr propofpf
and check propofpf to check Σ; v; Γ; Φ ⊢ D : t. In the case of extr propofpf no
proposition t is given. If the given proof term does prove a proposition t, this
βηδ-normal t is returned. Otherwise, the exception CheckingFailure (or one of
the resource bound exceptions) is raised. In the case of check propofpf a βηδ-
normal proposition t is given and is checked to be equal to the result returned
by extr propofpf. If the two are not equal, CheckingFailure is raised.

9.9 Publication Checking

We can now turn to the main functions exported by the mathdata module: the
functions for checking theory specifications, signature specifications and docu-
ments. In each case, if the publication is checked to be correct, a global signature
is returned. If a theory specification is checked to be correct, then a theory is
also returned. If a publication is determined not to be correct, an exception is

64 CHAPTER 9. FORMALIZED MATHEMATICS

Φ = ρ0, . . . , ρk−1 j < k

Σ; v; Γ; Φ ⊢ Hj : ρj

Σ = (O,K) (h, s) ∈ K

Σ; v; Γ; Φ ⊢ �h : [s]Σ↓

Σ; v; Γ; Φ ⊢ D : ∀αs Σ; v; Γ; Φ ⊢ t : α

Σ; v; Γ; Φ ⊢ Dt : [s[0 := [t]Σ]]↓

Σ; v; Γ; Φ ⊢ D : s → t Σ; v; Γ; Φ ⊢ E : s

Σ; v; Γ; Φ ⊢ DE : t

v ⊢ s stp Σ; v;α,Γ;Φ ↑10⊢ D : s

Σ; v; Γ; Φ ⊢ λαD : ∀αs

Σ; v; Γ ⊢ s : o Σ; v; Γ; [s]Σ↓,Φ ⊢ D : t

Σ; v; Γ; Φ ⊢ λsD : [s]Σ↓ → t

Σ; v; Γ; Φ ⊢ D : ∀̂s v ⊢ β stp

Σ; v; Γ; Φ ⊢ Dβ : s[0 := β]

Σ; v + 1; ·; · ⊢ D : s

Σ; v; ·; · ⊢ ΛD : ∀̂s

Figure 9.4: Rules for when a proof proves a proposition

raised. Some of these exceptions have been mentioned above: BetaLimit (too
many β-reductions), TermLimit (too many large terms), NonNormalTerm (a term
in a publication was not βη-normal) and CheckingFailure (either type checking
or proof checking failed). In addition, there are three more exceptions:

• NotKnown is an exception indicating an attempt to import proposition as
previously known failed.

• UnknownTerm is an exception indicating an attempt to import an object
by the hash root of the term failed.

• UnknownSigna is an exception indicating that an attempt was made to
import an unknown signature.

Signature specifications and documents may import previous signatures and
this is handled by import signatures. An extra value imported prevents importing
of signatures multiple times.

There are three functions for checking publications:

• check theoryspec checks a theory specification and (upon success) returns
a theory and a global signature. The empty theory specification returns
the empty theory and the empty global signature. Suppose the theory
specification is nonempty. We recursively call the procedure on the rest
of the specification to obtain a theory T = (P,A) and global signature
Σ = (O,K). The head of the specification is then handled as follows:

9.9. PUBLICATION CHECKING 65

– ThyPrim(α): check that 0 ⊢ α ptp (α is valid as a polymorphic type
in type context 0) and return the theory (P ′,A) where P ′ is P, α and
global signature Σ. This declares the type of the next primitive cn.

– ThyDef(α, s): check that s is βη-normal, 0 ⊢ α ptp (α is valid as a
polymorphic type in type context 0) and that Σ; 0; · ⊢ s : α (s has
type α) and return the theory T and the global signature (O′,K)
where O′ is O with the additional entry (TR♯(s), α, s). That is, the
global signature has enough information to recover the type of s and
the term s from the hash root TR♯(s).

– ThyAxiom(t) check that t is a βη-normal proposition (in the type
context 0 and empty term context). Let k be the hash root TR♯(t).
Let A′ be A with the additional entry k (to record the new axiom
of the theory). Let K′ be K with the additional entry (k, t) (to
record that �k is a proof of t). Return the theory (P,A′) and global
signature (O,K′).

• check signaspec checks a signature specification and (upon success) returns
a global signature. This is performed within a fixed theory T = (P,A).
The work is done by an auxiliary function check signaspec rec which keeps
up with which signatures have been imported. We can define the recursive
procedure as follows: The empty signature specification returns the empty
global signature. Otherwise, we recursively call the procedure on the rest
of the document to obtain a global signature Σ = (O,K). Then we handle
each of the signature item cases as follows:

– SignaSigna(h): import the signature identified by h. If no signature
identified by h is found, then raise UnknownSigna. Otherwise, the
result is a signature Σ′ = (O′,K′) where O ⊆ O′ and K ⊆ K′. (Here
⊆ means each entry in the first list is an entry in the second.)

– SignaParam(h, α): check that 0 ⊢ α ptp and that the term with hash
root h is known to have type α. This second check is performed by
calling tm tp p with a generic test gvtp, the signature, the theory
identifier, h and α. The test can succeed by noting h is already
declared in the signature to have type α or by verifying gvtp when
called on the theory identifier, h and α. Later when check signaspec

is used, gvtp is instantiated by a test to determine if a certain term
address (formed from the theory identifier, h and α) is owned as an
object. Assuming these checks succeed, return the signature (O′,K)
where O′ is O with the additional entry (h, α,None).

– SignaDef(α, s): check s is βη-normal, 0 ⊢ α ptp and Σ; 0; · ⊢ s : α.
Let h be the hash root TR♯(s). If s is ♯h, then return Σ (since
recording h as defined by ♯h would be cyclic). If s is not ♯h, then
return (O′,K) where O′ is O with the additional entry (h, α, s).

– SignaKnown(t): check t is βη-normal and that Σ; 0; · ⊢ t prop. Let k
be the hash root TR♯(t). Assuming k is a the hash root of a known

66 CHAPTER 9. FORMALIZED MATHEMATICS

proposition, return (O,K′) where K′ is K with the additional entry
(k, t). In order for k to be the hash root of a known proposition, we
check that either k ∈ A (so k is the hash root of an axiom of the
theory) or the test known p passes using a generic test gvkn of the
signature, theory identifier and k holds. The test known p passes if ei-
ther (k, s) ∈ K for some s (so k known in the signature) or gvkn holds
for the theory identifier and k. Later when check signaspec is used,
gvkn is instantiated by a test to determine if a certain term address
(formed from the theory identifier and k) is owned as a proposition.

• check doc checks a document and (upon success) returns a global signa-
ture. The work is done by an auxiliary function check doc rec which keeps
up with which signatures have been imported. We can define the recur-
sive procedure as follows: The empty document returns the empty global
signature. Otherwise, we recursively call the procedure on the rest of the
document to obtain a global signature Σ = (O,K). Then we handle each
of the document item cases as follows:

– DocSigna(h) is handled like SignaSigna in the case of signature spec-
ifications.

– DocParam(h, α) is handled like DocParam in the case of signature
specifications.

– DocDef(α, s) is handled like DocDef in the case of signature specifi-
cations.

– DocKnown(t) is handled like DocKnown in the case of signature spec-
ifications.

– DocConj(t): check that Σ; 0; · ⊢ t prop and return the same global
signature Σ. Conjectures do not change the signature and cannot be
used in the rest of the document.

– DocPfOf(t,D): check that Σ; 0; · ⊢ t prop and Σ; 0; · ⊢ D : [t]Σ↓.
Return (O,K′) where K′ is K with (TR♯(t), t). That is, t (identified
by its hash root) is added to the list of known propositions.

Chapter 10

Assets and Transactions

The module assets defines a type asset. It also contains code to support the
inputs and outputs of transactions. The module tx defines a type tx of trans-
actions and a type stx of signed transactions, as well as code for checking the
validity of transactions and their signatures. “Validity” of a transaction is a
weak form of correctness that a transaction must satisfy before asking if it is
supported by the current ledger.

10.1 Assets

An asset consists of four pieces of information: a hash value (the asset id), a
64-bit integer giving the block in which the asset was published (the birthday),
an obligation (indicating who controls the asset) and a preasset (determining the
kind of asset). In the case of an asset in the initial distribution, the asset id
is the 160-bit hash value corresponding to the p2pkh or p2sh address. (Since
no p2pkh or p2sh addresses in the snapshot had the same 160-bit address,
these asset ids are unique.) In the case of an asset created as the output of a
transaction, the asset id is formed from hashing the transaction id paired with
the index of the output creating the identifier. Assets in the initial distribution
are given birthday 0 and the first block will be considered to have block height
1. Obligations and preassets are described below.

Note: Unit tests for the assets module are in assetsunittests.ml in the
src/unittests directory in the testing branch. These unit tests give a number
of examples demonstrating how the functions described below should behave.
The testing branch is, however, out of date with the code in the dev and
master branches.

Note: The Coq module Assets is intended to correspond to assets. There
are Coq types preasset, obligation and asset corresponding to the types with
the same names defined in OCaml. One difference is that in the OCaml code
an obligation also keeps a boolean indicating if the asset is a reward since this
was needed to implement forfeiture of rewards in case a staker double signs.

67

68 CHAPTER 10. ASSETS AND TRANSACTIONS

Readers can examine the formal properties proven in Assets to have a better
idea of what properties corresponding OCaml functions should satisfy. For
more information, see [32], although preassets in the version described there are
restricted to currency units.

10.1.1 Obligations

We first consider the type obligation:

type obligation = (payaddr * int64 * bool) option

Note that an obligation may be empty, which usually means the address that
holds the asset can spend it (here holds refers to the address in the ledger tree
where the asset is stored). In case an obligation is not empty, it consists of a
triple (α, n, r). Here α is a pay address (a p2pkh address or p2sh address) which
must sign in order to spend the asset. (The holder of the asset is the one who
can use the asset to stake. Hence obligations can be used to “loan” an asset to
a staker without giving the staker the ability to “spend” the asset.) The integer
n is the earliest block height at which the asset can be spent. (The intention
here is to “lock” an asset for a period of time. Such “locked” assets are given
preference when staking.) The boolean r indicates if the asset is a reward for
staking a block.1 Rewards are considered special in the sense that they can be
forfeited in the first 6 blocks after the reward is issued, if the issuer provably
double signs within the next 6 blocks.

10.1.2 Categories of Preassets and Assets

There are 11 kinds of assets , as determined by the corresponding preasset : cur-
rency units, bounties, object ownership, proposition ownership, negated propo-
sition ownership, object rights, proposition rights, markers, theory publications,
signature publications and document publications. The type preasset consists
of the following 11 corresponding constructors:

• Currency(n) represents n cants of currency units, where n is a 64-bit inte-
ger. A cant is the smallest currency unit considered in Qeditas.2 Currency
units can be transfered by fulfilling the appropriate obligation (which usu-
ally simply means signing the transaction spending the asset with an ap-
propriate private key).

• Bounty(n) represents n cants as a bounty on a proposition. Bounties are
held at term addresses, specifically at the term address of a proposition in
a theory. A bounty can be spent (and transformed into currency) by the
proposition owner or negated proposition owner. Typically neither the
proposition nor its negation have been proven in the theory (and so it has

1Philosophically, this should not be part of the “obligation,” but the reward indicator was
added late and this was a simple way to include it.

2The word “cants” is pronounced with a hard c as it is derived from the name Cantor.

10.1. ASSETS 69

neither a proposition owner nor a negated proposition owner) when the
bounty is placed.3 If someone publishes a document in which the propo-
sition is proven, the publisher declares the proposition owner. Likewise,
if someone publishes a document in which the negation of the proposition
is proven, the publisher declares the negated proposition owner. In ei-
ther case, the new owner (presumably the publisher) can then collect the
bounty.

• OwnsObj(α, p) corresponds to a declaration of object ownership of a term
(either a pure term or a term in a theory). The α is a pay address and
the p is an optional 64 bit integer. The actual object owner is determined
by the obligation of the corresponding asset (and so may or may not be
α). The address α is intended as an address others can pay in order to
purchase rights to use the object (as an imported parameter) in future
documents. The optional value p gives the price (in cants) to purchase
one right. If p is 0, then the object can be freely used (without a need to
purchase rights). If p is None, then the object cannot be used in this way
at all (and rights cannot be purchased). (The object can always be used
in a new document by repeating the definition.)

• OwnsProp(α, p) corresponds to a declaration of proposition ownership of
a term (either a pure term or a term in a theory). The α is a pay address
and the p is an optional 64 bit integer. The actual proposition owner is
determined by the obligation of the corresponding asset (and so may or
may not be α). The address α is intended as an address others can pay
in order to purchase rights to use the proposition (as an imported known)
in future documents. The optional value p gives the price (in cants) to
purchase one right. If p is 0, then the proposition can be freely used
(without a need to purchase rights). If p is None, then the proposition
cannot be used at all (and rights cannot be purchased). (The proposition
can always be used in a new document by reproving it.)

• OwnsNegProp corresponds to a declaration of a negated proposition own-
ership of a term in a theory. Again, the “owner” is determined by the
corresponding obligation. This kind of asset is only to facilitate the col-
lection of a bounty by disproving a conjecture with a bounty.

• RightsObj(α, n) corresponds to the right to use the object with term ad-
dress n times. Some or all of these rights will be consumed when publishing
a document which imports the object as a parameter (omitting the defi-
nition). Note that to use objects within a theory, rights may be required
for the pure object (independent of the theory) and for the object within
the theory. These are two different term addresses.

3The “proposition owner” is determined by the (nonempty) obligation at the proposition
ownership asset held at the term address, if there is such an asset. Likewise, the “negated
proposition owner” is determined by the obligation at the negated proposition ownership asset
held at the term address, if there is such an asset.

70 CHAPTER 10. ASSETS AND TRANSACTIONS

• RightsProp(α, n) corresponds to the right to use the proposition with term
address α n times. Some or all of these rights will be consumed when
publishing a document which imports the proposition as a known (without
proof). Note that to use propositions within a theory, rights may be
required for the pure proposition (independent of the theory) and for the
proposition within the theory. These are two different term addresses.

• Marker is for part of the protocol for publishing a document. A publication
address is determined by the (privately known) publication with a (pri-
vately known) nonce. A marker must be at the publication address (as an
intention to publish) for 144 blocks (see intention minage) before the actual
publication can be published. The idea is that the true author of the docu-
ment publishes the marker roughly a day before revealing the publication
itself. The publication is revealed in the transaction publishing it. At
that point, a plagiarist could take the publication, compute a new nonce,
publish a new marker and then try to publish their copy. However, they
would need to wait at least 144 blocks before their copied version could be
published. By that time, the original publication should already be pub-
lished. The order of publication is important since this may determine
ownership of newly defined objects and newly proven propositions.

• TheoryPublication(α, ν, τ) is a preasset for publishing a theory specification
(theoryspec) τ . The pay address α identifies the author (possibly “pub-
lisher” is more accurate) and the corresponding transaction creating such
an asset must be signed by α. The hash value ν is a nonce to determine
the publication address for the marker which must be published 144 blocks
before the publication can be published.

• SignaPublication(α, ν, h,Σ) is a preasset for publishing a signature speci-
fication (signaspec) Σ. The pay address α identifies the author and the
corresponding transaction creating such an asset must be signed by α.
The hash value ν is a nonce to determine the publication address for the
marker which must be published 144 blocks before the publication can be
published. The optional hash value h identifies the theory in which the
signature belongs. An object or proposition can only be included in a
signature if no rights are required to use the object or proposition. (The
empty theory is identified by giving None for h.)

• DocPublication(α, ν, h,∆) is a preasset for publishing a document (doc) ∆.
The pay address α identifies the author and the corresponding transaction
creating such an asset must be signed by α. The hash value ν is a nonce to
determine the publication address for the marker which must be published
144 blocks before the publication can be published. The optional hash
value h identifies the theory in which the signature belongs. (The empty
theory is identified by giving None for h.)

The type asset of assets is now simply defined as a product.

10.1. ASSETS 71

type asset = hashval * int64 * obligation * preasset

The functions assetid, assetbday, assetobl and assetpre extract the components
from the asset.

10.1.3 Types for Transaction Inputs and Outputs

The inputs of transactions will be pairs of addresses and asset identifiers (hash
values) of assets held at these addresses. The type addr assetid plays the role of
a transaction input and is defined as follows:

type addr_assetid = addr * hashval

The outputs of transactions are triples of addresses, obligations and preassets.
(The asset identifier is determined by the transaction itself and the birthday is
determined by the block height in which the transaction is included.) The type
addr preasset plays the role of a transaction output and is defined as follows:

type addr_preasset = addr * (obligation * preasset)

The inputs and outputs of a transaction can be elaborated into a pair of an
address with an asset in certain situations. While checking a transaction is
supported the input assets are looked up from the ledger tree using the asset
identifier. A transaction output gives the obligation and preasset. When a
transaction is being included in a block at a given height, we know the birthday
and can use this (along with the asset identifier which is derived from the trans-
action) to form the asset. The type addr asset is included to represent such an
elaborated input or output.

type addr_asset = addr * asset

10.1.4 Functions

The functions hashobligation hashes an obligation (returning None for the None

obligation). The functions hashpreasset, hashasset, hash addr assetid, hash addr preasset

and hash addr asset hash the corresponding types.
As usual, there are functions for serializing and deserializing elements of

these types: seo obligation, sei obligation, seo preasset, sei preasset, seo asset,
sei asset, seo addr assetid, sei addr assetid, seo addr preasset, sei addr preasset,
seo addr asset and sei addr asset.

The purpose of the remaining functions exported by the assets module are
as follows:

• new assets takes a birthday b, an address α, an addr preasset list (transac-
tion outputs), a hash value (which should be the hash of the transaction)
and an output index (which should be 0 in the initial call) and returns
a list of assets which would be put into address α if the transaction is
published at block height b. The transaction hash and output index are
used to compute the asset ids.

72 CHAPTER 10. ASSETS AND TRANSACTIONS

• remove assets takes an asset list and a list of asset identifiers (the “spent
list”) and returns the asset list after removing the assets with ids in the
spent list.

• get spent takes an address α and an addr assetid list (transaction inputs)
and returns a list of asset ids being spent from the given address.

• add vout is similar to new assets except it is not specific to an address.4

It takes a birthday b, a hash value (which should be the hash of the
transaction), an addr preasset list (transaction outputs) and an output
index (which should be 0 in the initial call), and returns an addr asset list
consisting of the fully elaborated output assets (assuming the transaction
is published at block height b).

• preasset value takes a preasset, a birthday (which should be the birthday
of the corresponding asset) and a block height and returns the optional
number of cants that a preasset is worth. Only currency units and bounties
are worth cants. For other preassets, None is returned. If the preasset is
a bounty preasset with v cants, then the value is v cants. If the birthday
is not 0 (so the preasset was not part of the initial distribution) and the
preasset is a currency preasset with v cants, then the value is v cants.
Currency assets from the initial distribution (with birthday 0) are treated
in a special manner. In particular, their value will halve along with the
block rewards. Suppose the birthday is 0 and the preasset is a currency
asset with v cants. Until block height 280, 000, the preasset is worth v

cants. Block height 280, 000 is when the second reward halving occurs
and should occur roughly 5 years after the network begins running. For
the next 210, 000 blocks after block height 280, 000 the value is divided
in half (rounding down). The value continues to be divided in half each
210, 000 blocks from that point on until block height 11, 410, 000 at which
point all currency preassets with birthday 0 have value 0 cants. Block
height 11, 410, 000 should occur after roughly 200 years.5

• asset value returns the value of the underlying preasset.

• asset value sum returns the sum of the value of a list of assets (where None
is counted as 0).

• output signaspec uses objs takes an addr preasset list (transaction outputs)
and returns a list of pairs of term addresses. For each object imported
as a parameter by a signature specification being published as one of the
outputs, (α, β) will be on the output list where α is the term address given
by the hash root h6 of the term which was used to define the object and
β is the term address given by hashing h with the type of the object and

4It might make sense to delete one of these functions in favor of the other.
5The code for halving the value of the unclaimed initial distribution was added by Trent

Russell in early 2016, at his suggestion.
6Recall that term addresses are actually hash values, so α = h.

10.1. ASSETS 73

with the identifier of the current theory (and then tagging this with 32 to
avoid accidental collision). If an object is imported by multiple different
signatures being published, then the pair will be on the list multiple times.
The information is obtained by calling signaspec uses objs on appropriate
preassets.

• output signaspec uses props takes an addr preasset list (transaction out-
puts) and returns a list of pairs of term addresses. For each proposi-
tion imported as a known by a signature specification being published as
one of the outputs, (α, β) will be on the output list where α is the term
address given by the hash root h of the proposition and β is the term
address given by hashing h with the identifier of the current theory (and
then tagging this with 33 to avoid accidental collision). If a proposition is
imported by multiple different signatures being published, then the pair
will be on the list multiple times. The information is obtained by calling
signaspec uses props on appropriate preassets.

• output doc uses objs takes an addr preasset list (transaction outputs) and
returns a list of pairs of term addresses. For each object imported as a
parameter by a document being published as one of the outputs, (α, β) will
be on the output list where α is the term address given by the hash root h
of the term which was used to define the object and β is the term address
given by hashing h with the type of the object and with the identifier
of the current theory (and then tagging this with 32 to avoid accidental
collision). If an object is imported by multiple different documents being
published, then the pair will be on the list multiple times. The information
is obtained by calling doc uses objs on appropriate preassets.

• output doc uses props takes an addr preasset list (transaction outputs) and
returns a list of pairs of term addresses. For each proposition imported
as a known by a document being published as one of the outputs, (α, β)
will be on the output list where α is the term address given by the hash
root h of the proposition and β is the term address given by hashing h

with the identifier of the current theory (and then tagging this with 33 to
avoid accidental collision). If a proposition is imported by multiple differ-
ent document being published, then the pair will be on the list multiple
times. The information is obtained by calling doc uses props on appropri-
ate preassets.

• output creates objs takes an addr preasset list (transaction outputs) and
returns a list of triples (t, h, k) identifying objects defined in a document
being published as one of the outputs. Here t is the (optional) hash value
identifier of the theory in which the document lives, h is hash root of the
term defining the object and k is the hash of the type of the object. (The
term address of the pure object will be h and the term address of the
object in the theory will be the hash of h with t, k and the tag 32.) If
an object is created by multiple different documents being published, then

74 CHAPTER 10. ASSETS AND TRANSACTIONS

the triple will be on the list multiple times. The information is obtained by
calling doc creates objs on appropriate preassets. If the pure term address
for a created object is unowned, then it is new and must be given an
owner (both as a pure object and as an object within the theory) with
the same transaction publishing the document. If the pure term address
for a created object is owned, but the term address within the theory
is unowned, then the object is new for the theory and the term address
within the theory must be given an owner (as an object) with the same
transaction publishing the document.

• output creates props takes an addr preasset list (transaction outputs) and
returns a list of pairs (t, h) identifying propositions which are known as
the result of a publication in the outputs. Usually, this will mean t is
the (optional) hash value identifier of the theory in which the document
lives and h is the hash root of a proposition proven in a document being
published. Alternatively, a pair (t, h) can be included due to an axiom
being assumed in a newly published theory specification. In this case,
t is the hash value identifier of the theory derived from the new theory
specification and h is the hash root of one of the propositions given as
an axiom of the theory. Again, multiple publications may result in (t, h)
being included multiple times. The function uses doc creates props. If the
pure term address for a created proposition is unowned, then it is new and
must be given an owner (both as a pure proposition and as a proposition
within the theory) with the same transaction publishing the document. If
the pure term address for a created proposition is owned, but the term
address within the theory is unowned, then the proposition is new for the
theory and the term address within the theory must be given an owner
(as a proposition) with the same transaction publishing the document.

• output creates neg props takes an addr preasset list (transaction outputs)
and returns a list of pairs (t, h) identifying propositions whose negations
are proven in a document published in the outputs. Here this means
there is a document being published in the theory identified by the (op-
tional) hash value t and a proposition ¬s7 is proven in the document
and h is the hash root of s. The information is obtained by calling
doc creates neg props on appropriate preassets. There is no requirement
to declare an owner for a created negated proposition. Negated proposi-
tions cannot be “used” in the sense that an object or proposition can be
used. The only purpose for declaring ownership of a negated proposition
is to collect a bounty.

• rights out obj takes an addr preasset list (transaction outputs) and a term
address α and sums the number of rights to use α as an object created by
the outputs.

7Here ¬s actually means literally negation (λox0 → ⊥) applied to s or s → ⊥ where ⊥ is
∀ox0.

10.1. ASSETS 75

• rights out prop takes an addr preasset list (transaction outputs) and a term
address α and sums the number of rights to use α as a proposition created
by the outputs.

• count obj rights takes a list of assets and a term address α and sums the
number of rights to use α as an object contained in the asset list.

• count prop rights takes a list of assets and a term address α and sums the
number of rights to use α as a proposition contained in the asset list.

• count rights used takes list of pairs of term addresses and a term address α
and counts the number of times α occurs as one of the pairs. (Technically
it counts how many times α is at least one of the pairs, but in practice
(α, α) will never occur.) The purpose is to determine how many times α
is “used” by publications given in outputs of a transaction.

• obj rights mentioned takes an addr preasset list (transaction outputs) and
returns a list of term addresses. A term address is included in the output if
object rights for it are being explicitly output (as RightsObj preassets) or if
the object is being used in a document being published. (We do not count
uses in signature specification publications since a signature specifications
will only be allowed if rights are not required.)

• prop rights mentioned takes an addr preasset list (transaction outputs) and
returns a list of term addresses. A term address is included in the out-
put if proposition rights for it are being explicitly output (as RightsProp

preassets) or if the proposition is being used in a document being pub-
lished. (We do not count uses in signature specification publications since
a signature specifications will only be allowed if rights are not required.)

• rights mentioned combines the results of obj rights mentioned and prop rights mentioned

to give a list of all term addresses where rights are either being output or
may be consumed to publish a document.

• units sent to addr takes an address β and an addr preasset list (transaction
outputs) and sums the value of the currency units being sent to β. The
purpose of this is to facilitate the purchase of rights by paying β.

• out cost takes an addr preasset list (transaction outputs) and sums the
total cost of publishing the transaction. This includes the value of all
currency and bounty assets created by the output as well as the burn cost
required to publish theory specifications and signature specifications.

10.1.5 Asset Database

The module DbAsset implements a database for storing assets (see Chapter 8).
At the moment, this uses the basic file storage implementation Dbbasic2. The
function get asset takes a hash value (an asset hash) and uses dbget to try to
look up the asset from the database. If it is not found in the database, then the

76 CHAPTER 10. ASSETS AND TRANSACTIONS

asset is requested from network peers8 and the exception GettingRemoteData is
raised. The idea is that the next time get asset is called the asset may have
been put into the database after it was received from a peer.

Note: The keys to the assets in the database are the asset hash (given by
hashasset), not the asset id (given by assetid).

10.1.6 Creation of Objects and Propositions

Let h be a theory identifier (an optional hash value), ∆ be a document and α

be a term address.

• We say (h,∆) creates the object at α if there is a definition DocDef(δ, s) in
∆ where α is either the term address of the pure object s or of the object
s of type δ in the theory with theory identifier h.

• We say (h,∆) creates the proposition at α if there is a proof DocPfOf(s,D)
in ∆ where α is either the term address of the pure proposition s or of the
proposition s in the theory with theory identifier h.

• We say (h,∆) creates the negated proposition at α if there is a proof
DocPfOf(s,D) in ∆ and a proposition t where s is either ¬t or t → ⊥9

and α is the term address of the proposition t in the theory with theory
identifier h.10

We extend these definitions from single documents to transaction outputs
(which may publish several documents).

Let o be an addr preasset list (transaction outputs) and α be a term address.

• We say o creates the object at α if there is some

(δ, (ω,DocPublication(γ, ν, h,∆))) ∈ o

where (h,∆) creates the object at α.

• We say o creates the proposition at α if there is some

(δ, (ω,DocPublication(γ, ν, h,∆))) ∈ o

where (h,∆) creates the proposition at α.

• We say o creates the negated proposition at α if there is some

(δ, (ω,DocPublication(γ, ν, h,∆))) ∈ o

where (h,∆) creates the negated proposition at α.

8This is not currently implemented. Some earlier code to do this is commented out.
9Here ⊥ is ∀ox0 and ¬ is λox0 → ⊥.

10We do not consider negated pure propositions. Negated propositions only need to be
considered for collection of bounties by disproving a conjecture. Conjectures only make sense
for propositions in a theory. (Note that every proposition is provable in an inconsistent theory,
and so for every pure proposition there is some theory in which the proposition is provable.)

10.2. TRANSACTIONS 77

Ownership of an object, proposition or negated proposition will be origi-
nally justified by the creation of the object, proposition or negated proposition.
We need a notion of support for this purpose. Ownership preassets are those
of the form OwnsObj(β, p), OwnsProp(β, p) and OwnsNegProp. Let o be an
addr preasset list (transaction outputs) and α be a term address. We define
when o supports an ownership preasset at α by considering the three kinds of
preassets.

• We say o supports OwnsObj(β, p) at α if o creates the object at α.

• We say o supports OwnsProp(β, p) at α if o creates the proposition at α.

• We say o supports OwnsNegProp at α if o creates the negated proposition
at α.

These notions will be used when we give the conditions for a ledger tree to
support a transaction. In terms of the code, there is no single function check-
ing if o support u at α. The functions output creates objs, output creates props,
and output creates neg props can be used to obtain term addresses which are
created as objects, propositions and negated propositions. When we need to
check for support in ctree supports tx 2 in the module ctre we will already
have the values returned by output creates objs, output creates props, and out-

put creates neg props and will make use of these values at the time.

10.2 Transactions

The module tx defines a type tx for transactions, a type stx for signed trans-
actions and functions for testing the validity of transactions and signed trans-
actions. Here validity of a transaction refers only to properties that can be
checked without reference to the state of the ledger. For properties that require
the ledger state, we will speak of support for a transaction (see Chapter 11).
There is a slight exception, however. We check validity of input signatures
(check tx in signatures) of a transaction relative to a list of assets being spent.
These assets would need to be looked up in the ledger since the transaction only
mentions the asset identifiers.

Note: Unit tests for the txmodule are in txunittests.ml in the src/unittests
directory in the testing branch. These unit tests give a number of examples
demonstrating how the functions described below should behave. The testing
branch is, however, out of date with the code in the dev and master branches.

Note: The Coq module Transactions is intended to correspond to tx. The
Coq types Tx and sTx correspond to the types tx and stx in the OCaml version.
Readers can examine the formal properties proven in Transactions to have a
better idea of what properties corresponding OCaml functions should satisfy.
For more information, see [32].

The type tx of transactions is simply defined as a pair of an addr assetid list
(a list of pairs of addresses and hash value asset ids) and an addr preasset list
(a list of addresses associated with an obligation and a preasset).

78 CHAPTER 10. ASSETS AND TRANSACTIONS

type tx = addr_assetid list * addr_preasset list

In order to avoid needing to give multiple signatures corresponding to the
same address, we allow transaction signatures to reference already given signa-
tures. This is accomplished using the type gensignat or ref defined as follows:

type gensignat_or_ref = GenSignatReal of gensignat

| GenSignatRef of int

The idea is that we can have a list such at [σ1, σ2, 0, 1] where σ1 and σ2 are
of type gensignat giving real signatures and 0 and 1 are references to σ2 and
σ1, respectively. The function getsig is used to determine the signature given a
gensignat or ref and a list of signatures. In practice, the list of signatures given
to getsig will be a list of the previous signatures. In the example [σ1, σ2, 0, 1]
the initial list of previous signatures is empty. In this case getsig is first called
with the signature σ1 returns σ1 and the list [σ1]. The next call to getsig would
be with σ2 and the list [σ1] returning σ2 and the list [σ2;σ1]. The third call
to getsig would be with the reference 0 and the list [σ2;σ1] and return σ2 (as
element 0 on the list) and the unchanged list [σ2;σ1]. The fourth call to getsig

would be with the reference 1 and the list [σ2;σ1] and return σ1 (as element 1
on the list) and the unchanged list [σ2;σ1].

The type stx of signed transactions is a transaction associated with two lists
of generalized signatures (gensignat) or references to other signatures.

type stx = tx * (gensignat_or_ref list * gensignat_or_ref list)

The first list gives “input” signatures and the second list gives the “output” sig-
natures. The “input” signatures are required to spend or move the assets in the
input. The “output” signatures are for the authors of publications. (Without
these “output” signatures, a plagiarist could create his own transaction with
someone elses publications and use his transaction to assign ownership of new
objects and propositions.)

The serialization and deserialization functions are seo tx, sei tx, seo txsigs,
sei txsigs, seo stx and sei stx.

We briefly describe the following exported functions:

• hashtx hashes a transaction, giving the identifier for the transaction (the
transaction id). Note that this does not depend on signatures, and so
transaction malleability is not an issue.

• tx inputs is a projection function giving the input list of a transaction.

• tx outputs is a projection function giving the output list of a transaction.

• no dups is simply a helper function to ensure a list is duplicate free.11

11This is simply exported because the same function is required in the block module to
ensure that no transaction is listed more than once in a block. As it has nothing to do with
transactions, it should be moved to a more generic module imported by both tx and block.

10.2. TRANSACTIONS 79

• tx inputs valid takes a transaction input list and checks that there is at
least one input and there are no duplicate inputs.

• tx outputs valid takes a transaction output list and checks that it is valid
in that the following conditions hold:

1. At most one owner (as an object or proposition) is declared for each
term address.12 The function checking this is tx outputs valid one owner.

2. Each preasset is sent to an appropriate kind of address. Ownership
preassets are sent to term addresses and publications and markers
are sent to publication addresses.13 The function checking this is
tx outputs valid addr cats.

• tx valid checks that both the inputs and outputs are valid in the sense
above.

• tx signatures valid takes a block height b, an asset list and a signed trans-
action and checks that the input signatures and output signatures are
valid. The work is partitioned in check tx in signatures to check the input
signatures and check tx out signatures to check the output signatures.

– check tx in signatures ensures that for each input (except those spend-
ing markers and bounties) there is an appropriate input signature.
Here there are two possibilities. There could be a signature permit-
ting the spending of the asset (check spend obligation) or a signature
permitting the movement of the asset (check move obligation). A sig-
nature permitting the spending of the asset is either a signature by
the pay address in the obligation (assuming the appropriate block
height has been reached) or by the address where the asset is held
if there is no obligation.14 A signature permitting the movement of
the asset is by the address where the asset is held (assuming it is a
pay address) and is only allowed if there an output with exactly the
same obligation and preasset as the asset in question. Essentially
this allows the “movement” of an asset out of an address to a new
address.15

– check tx out signatures ensures the authors of all publications have
signed the transaction. Note that the asset list is not required here.

12Note that it is legal for one term address to obtain an owner as an object and another
owner as a proposition. In fact, this should be common for pure terms. For example, the
term ∀ox0 → x0 (or ⊤) will have a hash root h⊤. This can be both defined and owned as an
object as well as proven and owned as a proposition.

13This should probably be extended to ensure currency units and rights are only sent to
pay addresses and bounties are only sent to term addresses.

14The obligation None defaults to being the address where the asset is held with no block
height requirement.

15This could mitigate the effect of someone “spamming” someone else’s address with un-
wanted and unowned assets.

80 CHAPTER 10. ASSETS AND TRANSACTIONS

• tx signatures valid asof blkh is like tx signatures valid but not given a block
height. Instead it finds the minimum block height at which the signatures
are valid and returns this block height (or None if there is no such block
height).

• txout update ottree takes a transaction output list and uses it to update
the current (possibly empty) ttree by including any new theories created
by publishing theory specifications.

• txout update ostree takes a transaction output list and uses it to update
the current (possibly empty) stree by including any new signatures created
by publishing signature specifications.

10.2.1 Databases for Transactions and Signatures

The module DbTx implements a database for storing transactions and the mod-
ule DbTxSignatures implements a database for storing transaction signatures
(see Chapter 8). In both cases the key is the transaction id (the hash of the
transaction, not including the signatures). To recover a value of type stx both of
the values are required. At the moment, both of these use the basic file storage
implementation Dbbasic2.

Chapter 11

Ledger Trees

The ctre module implements compact trees (“ctrees”) and supporting functions.
Compact trees are used to approximate the state of the ledger by recording what
assets are held at what addresses. The ctregraft module implements a way to
graft information onto a compact tree in order to form an approximation with
more information.

Note: Unit tests for the ctre and ctregraftmodules are in ctreunittests.ml

in the src/unittests directory in the testing branch. These unit tests give
a number of examples demonstrating how the functions described below should
behave. The testing branch is, however, out of date with the code in the dev

and master branches.

11.1 Compact Ledger Trees

We describe the main content of the module ctre.

Note: The largest part of the Coq formalization deals with verifying com-
pact trees indeed represent ledgers as intended. The Coq module LedgerStates

represents ledgers as functions describing the current state of the ledger (see the
Coq type statefun). The Coq module MTrees uses a form of Merkle tree [19]
to approximate such a statefun function. The Coq types hlist and nehlist de-
fined in MTrees correspond to the types hlist and nehlist defined in ctre in the
OCaml code. The dependent Coq type mtree n is a Merkle tree with height n,
where the default case is n = 162 (since Qeditas addresses are determined by
162 bits). The Coq module CTrees uses the compact tree (essentially a Patricia
tree) to represent the Merkle tree and hence approximate the ledger state. The
dependent Coq type ctree n is a compact tree with height n. In the OCaml code
the corresponding type is the simple type ctree. Several functions are defined
by recursion on n in both the Coq and OCaml versions, even though in the
OCaml version the requirement that the compact tree has height n is no longer
enforced by the type system. Note that CTrees (mostly) corresponds to ctre,
while LedgerStates and MTrees are only needed in the theory and (for the most

81

82 CHAPTER 11. LEDGER TREES

part) have no counterpart in the OCaml code. For more information, see [32].

11.1.1 Coin-age

We first consider some variables which affect the likelihood of coins to stake.1

The current settings have been chosen after doing some simulations to determine
a reasonable mixture between staking of coins in the initial distribution vs.
staking of new coins issued through block rewards. (Initial simulations revealed
that block rewards could easily dominate staking in the first few weeks unless
their influence was dampened.)

Typically, unlocked currency assets age quadratically as (1 + ⌊ a
512⌋)

2 where
a is the number of blocks since the asset became mature. This continues until
a maximum age is reached. Users may commit currency assets to stake by
locking them. Locked non-reward assets mature more quickly and, once mature,
have their maximum age until it is close to the block height at which they will
be unlocked, at which point they will be ineligible for staking. Rewards are
necessarily locked. They age like unlocked currency assets until it is close to
the block height at which they will be unlocked, at which point they will be
ineligible for staking.

• maximum age is the number of blocks after which unlocked coins stop
aging. This is currently set to 214. With a 10 minute average block
time, this means unlocked coins reach their maximum age after roughly
4 months. (Coins in the initial distribution are exceptional: they have
birthday 0 and start with their maximum age.)

• maximum age sqr is (1 + ⌊ a
512⌋)

2 where a is maximum age. This is the
maximum factor that can be used to determine an asset’s coin-age. Given
current settings this is 332, i.e., 1089.

• reward maturation indicates how old a reward must be before it can begin
staking. This is currently set to 512.

• unlocked maturation indicates how many blocks must pass before an un-
locked asset can be used for staking. It is currently set to 512.

• locked maturation indicates how many blocks must pass before a new
locked currency asset can be used for staking. It is currently set to 8.
This implies that 8 blocks after creating a locked currency asset, the cur-
rency asset can be used for staking with its maximum age, until it is close
to being unlocked.2

• close to unlocked indicates the point at which locked assets can no longer
be used for staking. It is currently set to 32, meaning that the locked asset

1Since this has nothing to do with compact trees, it should be moved to a more appropriate
module.

2The intention here is to encourage stakers to commit to “locking” some of their coins only
for use in staking.

11.1. COMPACT LEDGER TREES 83

cannot be used for staking if it is 32 blocks from being spendable (or even
after it is spendable).

Rewards must be locked until a certain block height before they can be
spent. In order to prevent rewards from dominating the early staking process,3

this lock time is very long at first (16384 blocks, roughly 4 months), but reduces
to 128 blocks (roughly 1 day) over the course of the first 114688 blocks (roughly
2 years). The function reward locktime takes a given block height and returns
the minimum number of blocks a reward must be locked. For the first 16384
blocks, the reward locktime is 16384 (the same as maximum age). Every 16384
blocks, the reward locktime is halved until it reaches 128, where it remains
indefinitely.

The function coinage computes the coin-age of a currency asset given the
current block height. As described above the “age” ranges from 0 to 1089, with
a quadratic increase each 512 blocks. (Specifically, the “age” progresses to be
n2 where n is incremented from 1 to 33 each 512 blocks and then remains at
33.) Assume v is the number of cants in the currency asset. If the birthday of
the asset is 0, then it is part of the initial distribution and its coin-age is 1089v.
Other than coins in the initial distribution, there are three cases: unlocked
currency assets, locked rewards and locked non-rewards. Unlocked currency
asset and locked rewards mature after 512 blocks and then age quadratically as
described above. In the case of locked rewards, the coin-age drops to 0 after
block height l−32, where l is the lock given for the reward. Locked non-rewards
mature after 8 blocks and then have coin-age 1089v until the coin-age drops to
0 after block l − 32, where l is the lock given.

11.1.2 Approximating Asset Lists by Hlists

An asset list can be approximated by an hlist H, a value of type hlist. The
constructors for hlist are as follows:

• HHash(h) approximates a nonempty asset list with hash root h.4

• HNil approximates the empty asset list.

• HCons(a,H) where a is an asset and H is an hlist.

• HConsH(h,H) where h is an asset id (a hash value) and H is an hlist.

The idea is that an hlist explicitly lists a prefix of the assets (or references to
the assets by their id) ending with a hash root summarizing the rest of the asset
list. It is also possible for the hlist to list all the assets. Values of this type can
be serialized and deserialized using seo hlist and sei hlist.

The type nehlist represents nonempty hlists and has three constructors:

3If rewards could be unlocked quickly, then they could be spent to create a locked non-
reward asset. This locked non-reward asset would very quickly mature and begin staking with
its maximum age.

4The hash root of an asset list does not seem to be explicitly defined in the code. However,
it could be defined using ohashlist and hashasset and this seems to be the intended hash root.

84 CHAPTER 11. LEDGER TREES

• NehHash(h) corresponds to the hlist HHash(h).

• NehCons(a,H) corresponds to the hlist HCons(a,H).

• NehConsH(h,H) corresponds to the hlist HConsH(h,H).

Values of this type can be serialized and deserialized using seo nehlist and
sei nehlist.

We briefly relevant functions.

• nehlist hlist converts a nonempty hlist to an hlist.

• hlist hashroot computes an optional hash root for an hlist, with None play-
ing the role of the hash root for HNil.

• nehlist hashroot computes a hash root for an nehlist, the same as the one
given by hlist hashroot.

• in hlist and in nehlist check if an asset is explicitly listed in the hlist or
nehlist. Note that this will return false if the asset is not explicitly listed
but is an asset on the part of the list being summarized by HHash or
NehHash.

• print hlist and print hlist to buffer print hlists and are included for debug-
ging purposes.

11.1.3 Compact Trees

The intention of a compact tree is to provide a binary tree approximation of a
function from addresses (162-bit sequences) to hlists, where the hlists approx-
imate the assets held at the addresses. In general, functions on compact trees
will be defined by recursion and so we usually need to consider compact trees
at level n (corresponding to functions from n-bit sequences to hlists). A 0 bit
corresponds to the left child while a 1 bit corresponds to the right child.

The vast majority of the leaves will be empty, and so compact trees only
store the nonempty parts explicitly. The empty compact tree (with no assets
stored at leaves) can be thought of as represented by None, and the type ctree

option is used when the empty compact tree should be considered.
Compact trees C are values of type ctree, which is defined by the following

constructors.

• CLeaf(b,H) is a compact tree with a single nonempty leaf at the location
determined by the bit sequence (list of booleans) b and containing the
nonempty hlist H.

• CHash(h) is a compact tree with a hash h. This approximates every com-
pact tree with hash root h.

• CLeft(C) is the compact tree with C as its left child and the empty tree as
its right child.

11.1. COMPACT LEDGER TREES 85

• CRight(C) is the compact tree with the empty tree as its left child and C
as its right child.

• CBin(C0, C1) is the compact tree with two nonempty children: C0 on the
left and C1 on the right.

Values of type ctree can be serialized and deserialized using seo ctree and sei ctree.
The following functions are important:

• ctree hashroot computes a hash root for the compact tree. Many different
compact trees will give the same hash roots, however they will always
approximate the same ledger state. For example, they can differ in where
they include CHash nodes, as well has the level of detail included in hlists
at the leaves.

• octree hashroot takes an optional compact tree and returns an optional
hash value. It simply returns None for the empty compact tree None and
returns the result of ctree hashroot otherwise.

• ctree lookup asset takes an asset id (a hash value), a ctree and a bit se-
quence. It traverses to leaf in the ctree following the bit sequence. It then
tries to look up the asset with the asset id in the nonempty hlist at the
leaf. If the leaf is empty or the asset is not found, then None is returned.
Otherwise, the asset is returned.

• ctree addr given an address and a compact tree, returns the leaf (as a com-
pact tree) at that address. This leaf could either be None indicating no
assets are held at the address, or it could be a nonempty hlist, approx-
imating the assets held at the address. It also returns the depth, which
should always be 162, so it can be ignored.

• octree lub takes the “least upper bound” of two optional compact trees.
These are assumed to be “compatible” in the sense that they must have
the same hash root. This means either both will be empty (None) or both
will be compact trees. The least upper bound of two empty compact trees
is the empty compact tree. For nonempty compact trees, the recursive
structure is followed, abreviations are expanded, and if one of the trees
is a CHash node then the other tree is taken. The idea is that if some
information is in at least one of the trees, then the information will be in
the resulting tree.

• print ctree and print ctree all print compact trees and are included for de-
bugging purposes.

11.1.4 Elements

As noted above, the purpose of having CHash(h) nodes in compact trees and
having HHash(h) nodes in hlists is to work with small approximations of larger

86 CHAPTER 11. LEDGER TREES

structures. We will need to save some of these small approximations as key-
value pairs in a database (see Chapter 8). This, however, introduces a problem:
many different ctrees will have hash root h and can be approximated by the
compact tree CHash(h). If we wish to use h as the key, there must be a unique
compact tree (at least up to the level of detail included) that corresponds to h.
A similar situation occurs when considering hlists.

To resolve these problems, we introduce a notion of elements for hlists and
compact trees.5 A compact tree element will be defined so that there is at most
one compact tree element with a given hash root. We consider the case of hlists
(and nehlists) first, as this is simpler.

First, empty hlists obviously do not need to be stored. It is clear that if the
hashroot of an hlist is None, then the hlist list is HNil. Hence we only need to
consider cons pairs. We say an hcons element is a pair (h, k) where h is a hash
value and k is an optional hash value. The idea is that the hlist (or nehlist)
corresponds to a nonempty asset list where the first asset has asset id h and
the rest of the asset list has hash root k (or None if there are no more assets on
the list). The weakest approximation of this asset list as an hlist that retains
the h and k is HConsH(h,HHash(k)) if k is not None and HConsH(h,HNil) if
k is not None otherwise. As an nehlist, the corresponding approximations are
NehConsH(h,HHash(k)) if k is not None and NehConsH(h,HNil) if k is not None.

The module DbHConsElt implements a database for storing hcons elements
(see Chapter 8). At the moment, this uses the basic file storage implementation
Dbbasic2.

The function save hlist elements takes an arbitrary hlist and splits it into
elements, saving the corresponding assets in the DbAsset database and the cor-
responding hcons elements in the database DbHConsElt. This ensures that there
is enough information to reconstruct the hlist from the hash root and the infor-
mation in the database. The function save nehlist elements performs a similar
function for values of type nehlist.

The function get hcons element takes a hash value and uses dbget to try
to look up the hcons element from the database. If it is not found in the
database, then the data is requested from network peers6 and the exception
GettingRemoteData is raised. The idea is that the next time get hcons element

is called the hcons element may have been put into the database after it was
received from a peer. The functions get hlist element and get nehlist element call
get hcons element and, if the hcons element is found, returns the information
packaged as a value of type hlist or nehlist.

Compact tree elements are defined to give full information for 9 levels, using
CHash(h) at the ninth level (and using NehHash(h) for all leaves). We can define
this more formally as follows:

• A compact tree is elemental at level 0 if it is of the form CHash(h).

5The notion of an element was introduced and coded by Trent Russell in early 2016. This
replaced earlier code which used “frames” and “abbrev” nodes in compact trees.

6This is not currently implemented. Some earlier code to do this is commented out.

11.1. COMPACT LEDGER TREES 87

• A compact tree is elemental at level i+1 if it is one of the following forms:
CLeaf(b,NehHash(h)), CLeft(c0) where c0 is elemental at level i, CRight(c1)
where c1 is elemental at level i or CBin(c0, c1) where c0 and c1 is elemental
at level i.

• A compact tree is an element if it is elemental at level 9.

The function ctree element p checks if a compact tree is an element and the
auxiliary function ctree element a checks if a compact tree is elemental at level
i.

The ctree super element a checks if a compact tree has at least as much ex-
plicit information as a compact tree that is elemental at level i. Likewise, the
ctree super element p checks if a compact tree has at least as much explicit infor-
mation as a compact tree element. Such compact trees can be used to extract an
approximating element. The function super element to element computes such
an approximation using the function super element to element a that computes
an approximation that is elemental at a given level.

The module DbCTreeElt implements a database for storing compact tree
elements (see Chapter 8). At the moment, this uses the basic file storage im-
plementation Dbbasic2.

The function save ctree elements takes a compact tree and factors it into el-
ements which are saved into the database, returning the compact tree CHash(h)
where h is the hash root of the compact tree. The function makes use of
save ctree elements a which constructs intermediate elemental compact trees and
uses dbput to save the constructed elements into the database.

The function get ctree element takes a hash value and uses dbget to try to
extract the corresponding compact tree element from the database. If it is not
found, then it is requested from peers7 and the exception GettingRemoteData is
raised. The idea is that the next time get ctree element is called the compact
tree element may have been put into the database after it was received from a
peer.

11.1.5 Transactions

We now describe functions relating compact trees and transactions. One of the
main concepts is that of support . In short, we say a compact tree supports a
transaction if for each input there is a corresponding asset held at the given
address and that a number of conditions hold. To be more precise, there are
further dependencies. For example, some of these conditions depend on the
block height (e.g., to ensure an old enough intention justifies a publication).8

Also, we must check the correctness of publications which may require look-
ing up a theory or signature. These dependencies are explicit in the function

7This is not currently implemented. Some earlier code to do this is commented out.
8Lock heights are not checked here, but instead are checked with the signatures of transac-

tions. The reason is that lock heights prevent an asset from being spent, but do not prevent
assets from being moved. The distinction between being spent and being moved is not relevant
for support.

88 CHAPTER 11. LEDGER TREES

ctree supports tx which checks if a compact tree supports a transaction, given a
block height, theory tree (ttree) and signature tree (stree). The conditions to be
checked often make reference to the actual assets being spent (which are referred
to in the transaction by their assetids). The function ctree lookup input assets

elaborates the inputs by looking up the assets. The exception NotSupported is
raised if some condition required for a transaction to be supported fails, which
can happen either because the assets being spent cannot be found in the com-
pact tree or because of failure of some condition.

Let C be a compact tree. We say an asset a is held at α in C if there is a
nonempty hlist H at leaf α in C and a is explicitly listed in H (see in nehlist).
Let ι be an addr assetid list (a list of transaction inputs) and ι′ be a list of pairs
(α, a) of addresses and assets. We say ι′ is an elaboration of ι relative to C if
for each (α, h) ∈ ι there is a pair (α, a) ∈ ι′ where a is held at α in C and a

has assetid h.9 The function ctree lookup input assets computes an elaboration
ι′ given ι and C, raising NotSupported if there is no asset a with assetid h held
at α in C for some (α, h) in ι.

The function ctree supports tx simply calls ctree lookup input assets to obtain
ι′ and then calls ctree supports tx 2 with this extra information. The function
ctree supports tx 2 checks the conditions for C to support τ = (ι, o) with elabo-
rated input ι′ relative to a block height b, a theory tree and a signature tree.10

Support requires several conditions. We describe each condition as a single
sentence followed by a longer description.11

1. All output addresses are supported. That is, for each (α, u) ∈ o

there is no CHash node along the path to the leaf in C with position α.
This is needed so that the new assets can be added to the leaves. For each
(α, u) ∈ o there are two possibilities: either there are no assets currently
held at α or there are assets represented by the nonempty hlist H at α.
If there are no assets, the new nonempty hlist will only contain the new
assets. If there are currently assets represented byH, we only need to push
the new assets onto the explicit prefix of H. Note that this is possible even
if H is only the hash root of the hlist.

2. If an object or a proposition is used in a signature specifi-
cation, then it must be free to use. For the definition of “used”
see output signaspec uses objs and output signaspec uses props. Recall that
each signature specification is intended for a specific theory (possibly the
empty theory). Each parameter in a signature specification will corre-
spond to two term addresses: one for the pure object and one for the
object in the theory. Both of these addresses must be owned as objects
and the ownership assets must both give 0 as the price of a right to use

9Technically, in the implementations the lists ι and ι′ will list assetids and assets in the
same order.

10The function ctree supports tx 2 is also given a list of assets, but this is simply the second
components of the pairs in ι′.

11Similar conditions can also be found in the Coq formalization as ctree supports tx in
CTrees.v.

11.1. COMPACT LEDGER TREES 89

the object. Likewise each axiom in a signature specification will corre-
spond to two term addresses: one for the pure proposition and one for
the proposition in the theory. Both of these addresses must be owned as
propositions and the ownership assets also must give 0 as the price of a
right to use the proposition. The reason for this condition is to prevent
someone from paying once for the right to use an object or a proposition
and then publishing it in a signature which is then free for anyone to use.
Of course, someone can purchase the ownership assets from the owners
and then make the corresponding objects and propositions free to use.

3. If rights are spent in the input, then they must be mentioned
in the output. If a preasset RightsObj(β, n) is being spent, then β

must be “mentioned” (see obj rights mentioned) in the sense that there is
either an output of the form RightsObj(β,m) or the object is used (as a
parameter) in a document being published. If a preasset RightsProp(β, n)
is being spent, then β must be “mentioned” (see prop rights mentioned) in
the sense that there is either an output of the form RightsProp(β,m) or
the proposition is used (as an axiom) in a document being published.

4. Rights must be balanced. Let α be a term address corresponding to
an object [a proposition] used in a document. Ensure that all the assets
held at α are explict (using hlist full approx) and look up the ownership
asset for α as an object [a proposition]. (Such ownership assets are held
at α.) If α has no owner, then the transaction is not supported. Let r1 be
the number of rights to α used as an object [a proposition]. That is, r1
is the number of documents which import α as a parameter [an axiom].
This is computed using count rights used. Let r2 be the number of rights
to α as an object [a proposition] which are created in the output of the
transaction. This is computed using rights out obj [rights out prop] and
can be described as a simple sum:

∑

RightsObj(α,m) in o

m

∑

RightsProp(α,m) in o

m

Let r3 be the number of rights to α as an object [a propostion] which are
spent in the input of the transaction. This is computed using count obj rights
[count prop rights] and can be described as a simple sum:

∑

RightsObj(α,m) in ι′

m

∑

RightsProp(α,m) in ι′

m

 .

The function ctree rights balanced is called with this information, return-
ing a boolean indicating if the rights are balanced . Rights being balanced
depends on the cost to purchase rights which is found in the ownership
asset. If the cost to purchase rights is None (meaning rights cannot be

90 CHAPTER 11. LEDGER TREES

purchased), then rights are balanced if r1 + r2 = r3.
12 If the cost to pur-

chase rights is 0, then the rights are balanced.13 Assume the ownership
asset is of the form OwnsObj(β, p) [OwnsProp(β, p)] where p > 0. That is,
the cost to purchase rights is p > 0. In this case it is possible rights are
being purchased by paying cants to β. Let r4 be the sum of cants sent to
β in the output o. The rights are balanced if r1 + r2 = r3 + r4.

14 The
transaction is not supported if the rights are not balanced.

5. Publications are correct, new and were declared in advance
by a sufficiently old intention (marker). Recall that there are
three kinds of publications: theory specifications, signature specifications
and documents. The corresponding preassets are TheoryPublication(γ, ν, τ),
SignaPublication(γ, ν, h,Σ) and DocPublication(γ, ν, h,∆). Recall that ν is
a nonce. There will be two publication addresses associated with the pub-
lication. One is determined simply by the contents (τ , (h,Σ) or (h,∆))
and must be the α (in o) where the publication asset will be held. (This is
checked in tx outputs valid addr cats.) The α must be empty or the trans-
action is not supported. (If α holds an asset, it implies the publication
has already been published.) All the information (including γ and ν) can
be hashed to obtain a publication address β, called the marker address .
The author of the document was able to compute this publication address
β before making the corresponding publication (included in the preas-
set) public without revealing information about the publication’s contents.
The author must publish a Marker asset to the address β a certain number
of blocks before attempting to publish the transaction with the publica-
tion.15 The number of blocks is intention minage which is currently set
to 144 (a day, assuming 10 minute block times). This Marker must be
spent by the transaction (assuring it exists) and must be old enough, oth-
erwise the transaction is not supported. Finally, the publication must
be correct. Correctness is judged by check theoryspec, check signaspec or
check doc. In the cases of check signaspec or check doc, the appropriate
theory (if nonempty) must be looked up in the current theory tree, and
the current signature tree must be given so that signatures imported by
the signature specification or document can be retrieved. Also, recall that
check signaspec and check doc depend on arguments gvtp and gvkn where
gvtp determines if an term is known to have a type in a theory and gvkn

determines if a proposition is known to be provable in a theory. Now that

12In practice, r1 > 0 since the object or proposition was used. Hence the only way this
equation can hold is if r3 > 0. This is possible if rights to use the object or proposition were
purchased earlier at a time when rights were being sold.

13Note that this means anyone can create rights to use the object or proposition later.
14There is a corner case here. If the same pay address β was used in more than one ownership

asset at term addresses α1 and α2, then someone could simultaneously create rights to use
α1 and α2 by paying cants to β once in a single transaction. This can be avoided by always
giving a unique pay address for distinct ownership assets. This uniqueness is not enforced.

15The purpose of this is to prevent plagiarism, as described when Marker was introduced in
Chapter 10.

11.1. COMPACT LEDGER TREES 91

we have access to the compact tree C, we are in a position to supply these
arguments. In particular, gvtp computes the term address α′ for the ob-
ject in the given theory (which depends on the theory identifier, the hash
root of the term in question and the hash of the type in question) and uses
hlist lookup obj owner to determine if α′ is known to have an owner as an
object. Similarly, gvkn computes the term address α′ for the proposition
in the given theory (which depends on the theory identifier and the hash
root of the term in question) and uses hlist lookup prop owner to determine
if α′ is known to have an owner as a proposition. Since term addresses can
only be given owners as objects [propositions] when they are published in
a document, the type correctness [provability] is guaranteed by ownership.

6. If a marker asset is being spent in the input, then there must
be a corresponding publication in the output. Suppose (β, a) ∈ ι′

where the preasset of a isMarker. There must be some TheoryPublication(γ, ν, τ),
SignaPublication(γ, ν, h,Σ) or DocPublication(γ, ν, h,∆) in o for which β is
the marker address.

7. If an ownership asset is spent in the input, then it must be
included as an output. That is, once a term address has an owner,
it will always have an owner. This is necessary since ownership is used
to determine which objects have certain types and which propositions
have been proven (in both cases relative to a theory). The ownership
asset may be spent and recreated for a number of reasons. It can be
done to change the pay address or the purchase price of rights. Such
a change could correspond to the ownership being sold from one party
to another, where the payment for the sale is part of the same (atomic)
transaction. Another reason would be to collect a bounty. Ownership of
propositions and negated propositions are spent (and recreated) as part
of a transaction which collect bounties. (Collecting bounties is the only
reason for ownership of negated propositions.) Note that the signature
to spend an ownership asset is the pay address in the obligation, not the
pay address for the purchase of rights. The pay address in the obligation
indicates the “owner” of the term address.16

8. New ownership preassets in the transaction outputs must have
an explicit (non-reward) obligation and must be created or
transferred. If an ownership output is being created, it must
be supported by the transaction outputs. Suppose (α, (ω, u)) ∈ o

where u is either OwnsObj(β, p), OwnsProp(β, p) or OwnsNegProp. The
obligation ω must not be None and must indicate it is not a reward. There
must either be an ownership asset at α listed in ι′ (so ownership is being
transferred) or no ownership asset is held at α in C (so the ownership
is being created). If the ownership asset is being created, then o must
support u at α (see Section 10.1.6).

16Ownership assets always have nontrivial obligations.

92 CHAPTER 11. LEDGER TREES

9. New objects and propositions must be given ownership by the
transaction publishing the document. There are three different
cases. (The notions of “creates” used here were defined in see Section 10.1.6.)
If o creates an object at term address α and there is no OwnsObj asset
held at α in C, then there must be some (α, (ω,OwnsObj(β, p))) ∈ o. If o
creates a proposition at term address α and there is no OwnsProp asset
held at α in C, then there must be some (α, (ω,OwnsProp(β, p))) ∈ o.
(There is no requirement that created negated propositions must be given
ownership.)

10. Bounties can only be collected by the owners of propositions
or negated propositions. Suppose (α, a) ∈ ι′ and the preasset of
a is Bounty(v). There must also be some (α, a′) ∈ ι′ (with the same
α) where the preasset of a′ is either OwnsProp(β, p) (for some β and p)
or OwnsNegProp. The fact that ownership asset is being spent means
that the “owner” (as given in the obligation of a′) must have signed the
transaction spending the bounty. Note that by a condition above, the
ownership asset must be recreated in the output o. The idea is that an
owner of the proposition or negated proposition collects the bounty by a
trivial transfer of the ownership asset.

An attentive reader will note that none of these conditions require the currency
units consumed in the input to be at least as great as the currency units cre-
ated in the outputs (plus those required to be burned to publish theories and
signatures). This is not required for support, and will not be true for coinstake
transactions (which receive a reward).

We summarize the descriptions of these three main functions discussed above
as follows:

• ctree lookup input assets takes a compact tree and an addr assetid list (a
list of transaction inputs) and uses ctree lookup asset to look up the assets
corresponding to the assetids, returning the resulting list of pairs of ad-
dresses and assets. If one of the assetids cannot be found in the compact
tree, the exception NotSupported is raised.

• ctree supports tx checks if a compact tree supports a transaction. The
function also requires an optional ttree (with all the currently known the-
ories) an optional stree (with all the currently known signatures) and the
current block height. If the transaction is not supported, the exception
NotSupported is raised. If the transaction is supported, the difference be-
tween the currency units output or burned and the currency units input
is returned. If this value is negative, then it corresponds to a fee. If the
value is positive, then it corresponds to a reward.

• ctree supports tx 2 is the same as ctree supports tx except it also receives
two extra inputs: a list of the input addresses associated with their assets
and a list of those assets.

11.1. COMPACT LEDGER TREES 93

If a compact tree supports a transaction or list of transactions, typically
some small approximation of the compact tree also provides the support. We
next describe functions to construct such small approximations.

• full needed takes a addr preasset list (a list of transaction outputs) and
returns a list of bit sequences (addresses represented as boolean lists)
indicating which leaves need to have their full list of assets explicit in
order to check if the transaction with these outputs is supported.

• get tx supporting octree takes a transaction and (optional) compact tree
and returns an approximation of the (optional) compact tree sufficient to
support the transaction.

• get txl supporting octree takes a list of transactions and (optional) compact
tree and returns an approximation of the (optional) compact tree sufficient
to support the transactions.

There are two functions which transform (optional) compact trees using
transactions.

• tx octree trans takes a block height, transaction and compact tree and
transforms the ctree by deleting assets consumed in the inputs and create
the new assets in the output. (The block height is needed to give birthdays
to the new assets.)

• txl octree trans transforms a compact tree according to a list of transac-
tions, sequentially.

There are also four auxiliary functions exposed in the interface.

• strip bitseq true takes a list of pairs, the first component of which are bit
sequences, and returns the list filtered to the ones with a true as the head
of the list with this true removed. For example, the input

[((false :: b0), x); ((true :: b1), y)]

would give the output
[(b1, y)].

• strip bitseq false takes a list of pairs, the first component of which are bit
sequences, and returns the list filtered to the ones with a false as the head
of the list with this false removed. For example, the input

[((false :: b0), x); ((true :: b1), y)]

would give the output
[(b0, x)].

• strip bitseq true0 takes a list of bit sequences, and returns the list filtered
to the ones with a true as the head of the list with this true removed.

94 CHAPTER 11. LEDGER TREES

• strip bitseq false0 takes a list of bit sequences, and returns the list filtered
to the ones with a false as the head of the list with this false removed.

These are exposed because they are used in the ctregraft module.17

11.2 Grafting Trees

The module ctregraft has code for grafting subtrees onto a compact tree in order
to form an approximation with more information. The purpose of this is so that
a block header can have a compact tree small enough to check the details of the
asset which staked the block, and the block delta can have a graft extending
this compact tree to a larger compact tree with enough information to support
all the transactions in the block.

Note: In the Coq formalization the Coq module CTreeGrafting corresponds
to ctregrafting. For more information, see [32].

The type cgraft is a list of hash values associated with compact trees. The
idea is simply to associate some hash roots with compact trees with these hash
roots. As usual, the serialization and deserialization functions for this type are
seo cgraft and sei cgraft.

There are four functions exposed by ctregraft.

• cgraft valid checks if a graft is valid , meaning simply that each pair (h, C)
is such that the hash root of C is h.

• ctree cgraft takes a graft G and a compact tree C and replaces each CHash(h)
in C with C′ where (h, C′) is in G.

• factor tx ctree cgraft takes a transaction and a compact tree C and com-
putes a pair (C′,G) of a compact tree C′ and a graft G.18 Here C′ is an
approximation of C and ctree cgraft applied to G and C′ yields C.

• factor inputs ctree cgraft takes an addr assetid (a list of transaction inputs)
and a compact tree C and computes a pair (C′,G) of a compact tree C′

and a graft G. Here C′ is an approximation of C and ctree cgraft applied
to G and C′ yields C. The purpose of this function is to factor the part
of the compact tree needed for the block header from the part needed for
the rest of the block.

17It might make more sense to combine the ctre and ctregraft modules so that these functions
need not be exposed.

18This function is currently unused.

Chapter 12

Blocks and Block Chains

The module block contains code related to blocks and block chains. This includes
code to check if a block header is valid (including verifying the properties of the
staking asset in the ledger), whether a block is valid and if a block or block
header is a valid successor to a block or block header. In order to verify these
properties we need to know when an asset is allowed to stake a block. We also
allow for the possibility of forfeiture of block rewards as a punishment for signing
on two different short forks.

Note: Unit tests for the block module have not been written.
Note: In the Coq formalization the Coq module Blocks corresponds to block.

For more information, see [32].

12.1 Stake Modifiers

A stake modifier is a 256 bit number. The type stakemod is defined as four
64-bit integers as a way of representing such a 256 bit number. The functions
seo stakemod and sei stakemod serialize and deserialize stake modifiers.

At each block height there will be a current stake modifier and a future
stake modifier. The current stake modifier determines who will be able to stake
the next block. The future stake modifier influences the next 256 current stake
modifiers.

The genesis current and future stake modifiers should be set in the vari-
ables genesiscurrentstakemod and genesisfuturestakemod. These will determine
who will be able to stake the first 256 blocks and will influence who will be
able to stake the next 256 blocks, so it is important that these genesis stake
modifiers are chosen in a fair manner. The function set genesis stakemods sets
genesiscurrentstakemod and genesisfuturestakemod by taking a 160-bit number
(as a 40 character hex string), applying one round of SHA256 to obtain the value
for genesiscurrentstakemod and another round of SHA256 to obtain the value for
genesisfuturestakemod.1

1The plan was to choose some Bitcoin height in the future and when that height was

95

96 CHAPTER 12. BLOCKS AND BLOCK CHAINS

The following three functions operate on stake modifiers.

• stakemod pushbit takes a bit (as a boolean) and a stake modifier, shifts
the 256-bit stake modifier (dropping the most significant bit) and using
the new bit as the new least significant bit.

• stakemod lastbit takes a stake modifier and returns its most significant bit
(as a boolean).

• stakemod firstbit takes a stake modifier and returns its least significant bit
(as a boolean).

The current stake modifier changes from one block height to the next by taking
the last bit of the future stake modifier and pushing this bit onto the current
stake modifier. The future stake modifier changes from one block height to the
next by pushing a new bit (either 0 or 1) onto the current future stake modifier.
This implies those who stake blocks influence what will be the current stake
modifiers, but this influence is limited. If one staker staked 50% of blocks, the
staker would choose approximately 128 bits of the 256 stake modifiers in the
future. The hope is that this influence is not enough to significantly improve
their chances in the future, as each bit not chosen by the staker also has a large
influence on who will be able to stake.

The function hitval performs one round of SHA256 on the least significant 32-
bits of a 64-bit integer (intended to be the current time), a hash value (intended
to be the asset id of the asset to stake) and a stake modifier (intended to be the
current stake modifier). It returns the result as 256-bit number called the hit
value.

12.2 Targets

A value of type targetinfo is a triple consisting of the current stake modifier,
the future stake modifier and the current target (represented by a big int). The
target info used to determine if an asset is allowed to stake the next block. In
particular, an asset can stake the hit value is less than the current target times
the coinage of the staked asset (or, the coinage times 1.25 if proof of storage is
used).

We have described above how the current and future stake modifiers change
at each block height. The current target should also change in order to target an
average 10 minute block. The function retarget defines how the target changes
after each block.

• genesistarget is set to the initial target used for the genesis block.2

reached to obtain the 160-bit seed number from the last 20 bytes of the hash of the Bitcoin
block header at that height.

2It is currently set to 2205, but this should be reevaluated after a test run and before the
launch of Qeditas.

12.3. PROOF OF STORAGE 97

• max target is set to the maximum value for the target (i.e., the minimum
difficulty). It is currently set to 2220.

• retarget takes a target τ and a number of seconds ∆ and returns a new
target. The intention is that the given target is the current target and
the number of seconds is the number of seconds between the current block
and the previous block. The value is the minimum of either max target or
τ(9000+∆)

9600 . In particular, the value returned is never more than the value
of max target and remains τ if ∆ is 600.

12.3 Proof of Storage

The consensus system for Qeditas is primarily proof-of-stake, but also includes
a proof-of-storage component. A node can use evidence that it is storing some
part of a term or document to increase the weight of its stake by 25%. The
evidence is a value of type postor, defined by two constructors:

• PostorTrm(h, s, α, k) is evidence of storage of part of a term of a type in
a theory at a term address. The optional hash value h identifies a theory,
s is a term, α is a type and k is a hash value. Here s should have type α

in the theory identified by h. The way this typing constraint is ensured is
by checking that the term address correspond to the object s in theory h

has an owner as an object. This ownership asset should have assed id k.
The term s is intended to be minimal: all except exactly one left of the
tree representing s should be an abbreviation (i.e., TmH of hash roots).
(This minimality condition is checked by check postor tm r.)

• PostorDoc(γ, ν, h,∆, k) is evidence of storage of part of a document at a
publication address. Here γ is a pay address, ν is a hash value (nonce), h is
an optional hash value (identifying a theory), ∆ is a partial document (of
type pdoc) and h is a hash value. The intention is that h is the asset id for
an asset with preasset DocPublication(γ, ν, h,∆′) held and the publication
address determined by hashing γ, ν, h and ∆′. Here ∆′ is a document
with the same hash root as the partial document ∆. The partial document
∆ should be minimal: with exactly one document item containing more
than hashes and with that one document item only containing one explicit
leaf, with others abbreviated by hash roots. (This minimality condition is
checked by check postor pdoc r.)

Values of type postor can be serialized and deserialized using seo postor and
sei postor.

The exception InappropriatePostor is raised if a value of type postor is not
an appropriate proof of storage because the term or partial document is not
minimal.

• incrstake multiplies the number of cants being staked by 1.25. This is the
adjusted stake used when proof of storage is included.

98 CHAPTER 12. BLOCKS AND BLOCK CHAINS

• check postor tm r checks the minimality condition for a term, returning
the hash of the unique important leaf upon success.

• check postor tm checks if PostorTrm(h, s, γ, k) can be used to increase the
chances of staking. Let α be the (p2pkh) address where the asset to be
staked is held. Let β be the term address for the object s of type γ in the
theory identified by h. Let h′ be the hash of the unique exposed leaf given
by check postor tm r. Let h′′ be the result of hashing the pair of β and h′.
Let h′′′ be the result of hashing α with h′′. There are two conditions:

1. A certain 16 bits of h′′′ are all 0. (This means that given a stake ad-
dress α, only one in every 65536 items of the form PostorTrm(h, s, γ, k)
can possibly ever be used to help α stake, independent of targets and
stake modifiers.

2. The hit value of h′′ is less than the target times the adjusted stake.

• check postor pdoc r checks the minimality condition for a partial docu-
ment, returning the hash of the unique important leaf upon success.

• check postor pdoc checks if PostorDoc(γ, ν, h,∆, k) can be used to increase
the chances of staking. Let α be the (p2pkh) address where the asset to
be staked is held. Let β be the publication address for the corresponding
document asset. Let h′ be the hash of the unique exposed leaf given by
check postor pdoc r. Let h′′ be the result of hashing the pair of β and h′.
Let h′′′ be the result of hashing α with h′′.

1. A certain 16 bits of h′′′ are all 0. (This means that given a stake ad-
dress α, only one in every 65536 items of the form PostorDoc(γ, ν, h,∆, k)
can possibly ever be used to help α stake, independent of targets and
stake modifiers.

2. The hit value of h′′ is less than the target times the adjusted stake.

12.4 Hits and Cumulative Stake

We now describe two functions for checking if an asset (optionally with proof
of storage) is allowed to stake. This is sometimes informally referred to as
“checking for a hit.” A third function check hit is deferred until we discuss
block headers.

• check hit b is an auxiliary function which does most of the work to check
if an currency asset can stake a block. It is given the block height, the
birthday of the asset, the obligation of the asset, the number of cants v

in the currency asset, the current stake modifier, the current target, the
current timestamp, the asset id of the asset to stake, the p2pkh address
holding the stake address3 and an optional proof of storage. If no proof

3Note that the obligation of the stake address may mean that a different person can spend
the staking asset than the holder who can stake the asset. This could be used to, for example,
“loan” assets to someone else to stake.

12.5. BLOCK HEADERS 99

of storage is given, the asset can stake if its hit value (relative to the time
stamp and current stake modifier) is less than the product of the target
and the coinage (as computed by coinage) of the asset. Suppose a proof
of storage is given. In this case, we consider an adjusted stake using 1.25v
instead of v. The asset can stake if the hit value of the asset is less than
the target times the coinage of the adjusted stake and the proof of storage
can be used (as judged by check postor tm or check postor pdoc).

• check hit a is simply a wrapper function which takes the target info (of
type targetinfo) and calls check hit b after extracting the current stake
modifier and current target from the target info. Factoring the functions
this way makes it clear that check hit b does not depend on the future
stake modifier.

The best block chain will be the one with the most cumulative stake.4 The
cumulative stake is represented by a big int. The function cumul stake computes
the new cumulative stake given the previous cumulative stake, the current target
τ and the latest delta time (time between blocks) ∆. It computes this by adding
the following (big integer) value to the previous cumulative stake:

⌊
max target

τ∆2−20
⌋

or adding 1 if this value is less than 1.

12.5 Block Headers

We now describe block headers. A block header is made up of two sets of infor-
mation: the header data and the header signature. The data part is represented
using the record type blockheaderdata while the signature part is represented
using the record type blockheadersig. A block header (of type blockheader) is
simply a pair of the data with the signature. The functions seo blockheader

and sei blockheader serialize and deserialize block headers. There is a value
fake blockheader which can be used when some data structure needs a block
header to be initialized.

The fields in the record type blockheaderdata are as follows:

• prevblockhash should contain the hash of the data in the previous block
header (or None for the genesis block header).

• newtheoryroot should be the hash root of the current theory tree (optional
ttree) after the block with this header has been processed. It will change
if some transaction in the block publishes a theory specification.

• newsignaroot should be the hash root of the current signature tree (optional
stree) after the block with this header has been processed. It will change
if some transaction in the block publishes a signature specification.

4The intention is also to have rolling checkpoints to prevent long range attacks.

100 CHAPTER 12. BLOCKS AND BLOCK CHAINS

• newledgerroot should be the hash root of the current compact tree (ctree)
after the block with this header has been processed. This will always
change since the asset staked will be spent and there will be outputs to
the coinstake transaction of the block.

• stakeaddr should be the p2pkh address where the asset being staked is
held.

• stakeassetid should be the asset id of the asset being staked.

• stored is an optional proof of storage (postor) and will be None if proof of
storage was not used to help stake this block.

• timestamp is a 64-bit integer time stamp and should correspond to the
time the block was staked.

• deltatime is a 32-bit integer which should contain the difference between
the time stamp of this block and the time stamp of the previous block.
(For the genesis block header, this should simply be 600.)

• tinfo should be the target information (current stake modifier, future stake
modifier and current target) for this block header.

• prevledger is an approximation of the compact tree before processing the
block corresponding to this block header. This approximation must con-
tain the asset being staked and, if proof of storage is included, the relevant
object ownership asset or document asset.

The fields in the record type blockheadersig are as follows:

• blocksignat is a cryptographic signature of type signat. This should be a
signature of a hash of the data in the block header. Unless an endorsement
is used, the signature should be by the private key corresponding to the
stake address. If an endorsement is used, the signature should be by the
private key

• blocksignatrecid is an integer which should be between 0 and 3. It is
included to help recover the public key for the address (either stake or
endorsed) from the signature (see the function recover key in the module
signat).

• blocksignatfcomp is a boolean indicating if the address (either stake or
endorsed) corresponds to the compressed or uncompressed public key.

• blocksignatendorsement is an optional endorsement. If None, then signa-
ture corresponds to the stake address. Suppose it is (β, r, b, σ) where β is
p2pkh address (the endorsed address), r is an integer (0 ≤ r ≤ 3), b is a
boolean and σ is a cryptographic signature. Here σ should be a signature
of the Bitcoin message “endorse β” where β is the endorsed address (as
a Qeditas address in base58 format). The signature σ should be by the

12.5. BLOCK HEADERS 101

private key corresponding to the address α and r and b are used to recover
the public key.

The following functions operate on block headers:

• blockheader stakeasset takes block header data (blockheaderdata) and tries
to return the staked asset by looking it up as stakeid at location stakeaddr

in the compact tree prevledger. This can fail in two ways. First, it could
be that the staked asset is not found, in which case an exception Header-

NoStakedAsset is raised. Second, it could be that prevledger includes more
information than is necessary to give the staked asset, in which case an
exception HeaderStakedAssetNotMin is raised.5

• hash blockheaderdata hashes the data in the block header. This is to de-
termine the hash to be signed in the signature part as well as the hash to
be used in the previousblockhash field of the next block header.

• check hit takes block header data (blockheaderdata) and checks if the given
staked asset is allowed to create the block. It simply calles check hit a after
extracting the target info (tinfo), time stamp (timestamp), stake asset id
(stakeassetid), address where the staked asset is held (stakeaddr) and the
optional proof of storage (stored) from given block header data.

• valid blockheader determines if a block header is a valid block at the cur-
rent height. In order to check if the block is valid the staked asset must be
retrieved from the previous ledger. The staked asset must be a currency as-
set worth v cants. The auxiliary function valid blockheader a is called with
the extra information given by this asset which in turn calls two (exported)
functions: valid blockheader signat and valid blockheader allbutsignat. valid blockheader signat

verifies the signature in the blockheader to be a valid signature (either
directly or via endorsement) of the hash given by hash blockheaderdata.
valid blockheader allbutsignat checks the following conditions:

1. The staked asset has the asset id declared in the header.

2. The delta time is greater than 0.

3. The staked asset is a “hit” for the current block height.

4. If proof of storage is included, then the asset id given for the object
ownership of the term or for the document is in the given approxi-
mation of the previous ledger.6

• blockheader succ determines if a second block header is a valid successor
to a first block header. The following conditions must be checked:

5The purpose of this condition is to prevent attackers from making unnecessarily large
headers. The current implementation seems to be flawed, however, as it would not allow the
relevant information from proof-of-storage to be included in prevledger.

6This probably no longer works if proof of storage is included, due to the minimality
constraint on prevledger.

102 CHAPTER 12. BLOCKS AND BLOCK CHAINS

1. The second prevblockhash is the hash of the data in the first given
block header.

2. The second timestamp is the sum of the first timestamp and the second
deltatime.

3. The current stake modifier given in the second tinfo is the result of
pushing the last bit of the future stake modifier of the first tinfo onto
the current stake modifier of the first tinfo.

4. The future stake modifier given in the second tinfo is the result of
pushing a 0 or a 1 onto the future stake modifier of the first tinfo.

5. The target given in the second tinfo is the result of retargeting using
the target given in the first tinfo and the first deltatime.

12.6 Proof of Forfeiture

Proof of forfeiture is optional data proving a staker signed on two recent chain
forks within 6 blocks. When such a proof is supplied by a staker of a block, the
new staker can take recent coinstake rewards from the double signing staker.
Such a proof is a value of type poforfeit and consists of a 6-tuple

(b1, b2, c1, c2, d, h).

Here b1 and b2 are block headers which should contain different data but both
be signed by the same stake address. The values c1 and c2 are lists of block
header data each of which should have length at most 5. Finally, v is the number
of cants being forfeited and h is a list of hash values (asset ids of the rewards
being forfeited).

The function check poforfeit verifies if the given value of type poforfeit can be
used to support forfeiture of rewards. It first verifies that the data in b1 and b2
are different (by ensuring their hashes are different) and are staked using assets
at the same stake address α. It also verifies that c1 and c2 have no more than
5 elements. It then verifies the signatures for b1 and b2. It calls check bhl on c1
and c2 to ensure that each forms a (reverse) chain connecting b1 and b2 to some
previous block hashes k1 and k2, and then checks that k1 = k2. This implies b1
and b2 are signed block headers forking from a common block (with hash k1).
(The function check bhl also ensures that the hash of b2 does not occur in c1
as this would mean the second chain is a subchain for the first, rather than a
fork. Likewise it ensures the hash of b1 does not occur in c2.) Finally it calls
check poforfeit a which looks up assets by the asset ids listed in h and verifies
that each is a reward less than 6 blocks old which was paid to address α and
that the sum of these rewards is v cants.

12.7 Blocks

A block consists of a block header and a block delta. The block delta (im-
plemented as the record type blockdelta) contains information about how to

12.7. BLOCKS 103

transform the previous ledger (compact tree) into the next ledger (compact
tree). In particular, the stake output is given (which completes the coinstake
transaction) and all other transactions in the block are given. In addition, an
optional proof of forfeiture is given which may effectively increase the rewards
given to the staker of the block. In order to transform the previous ledger, one
will generally need to graft more information about the previous ledger than
was given in the header. This graft is also given.

The blockdelta record type consists of four fields:

• stakeoutput is the output to the coinstake transaction.

• forfeiture is an optional proof that a recent staker signed on a recent fork,
thus justifying forfeiture of that staker’s recent rewards.

• prevledgergraft is a graft providing the extra information needed by the
output of the coinstake transaction, the other transactions in the block
and optionally the data in the forfeiture field.

• blockdelta stxl is a list of signed transactions, the transactions in the block.

The functions seo blockdelta and sei blockdelta serialize and deserialize block
deltas.

The type block is the product of blockheader and blockdelta. The functions
seo block and sei block serialize and deserialize blocks.

• coinstake builds the coinstake transaction by using the staked asset possi-
bly combined with forfeited rewards as the input and taking stakeoutput

from the block delta for the output.

• ctree of block returns the compact tree of a block (approximating the
ledger state before processing the block) by taking prevledger from the
block header data and grafting on prevledgergraft from the block delta.
We call this the compact tree of a block .

• tx of block combines all the transactions in the block (including the coin-
stake) into one large transaction combining all the inputs and all the
outputs. This is used to check validity of blocks.

• txl of block returns a list of all (unsigned) transactions in the block, in-
cluding the coinstake transaction and the underlying transactions listed
in blockdelta stxl of the block delta.

• rewfn returns the number of cants of the reward at the current block height.
The reward schedule is the same as Bitcoins (except for the amount of
precision), except with the assumption that the first 350000 blocks have
already passed (since this was the block height for the snapshot). We
begin counting with a block height of 1. From blocks 1 to 70000, the block
reward is 25 fraenks (2.5 trillion cants). After this the reward halves every
210000 blocks. Since the initial distribution contained (slightly less than)
14 million fraenks, this leads to cap of 21 million fraenks.

104 CHAPTER 12. BLOCKS AND BLOCK CHAINS

• valid block checks if a block is valid at the given height. It does this by
looking up the staked asset and passing the information to valid block a

which checks the following conditions:

1. The header must be valid.

2. The transaction outputs in stakeoutput must be valid (as judged by
tx outputs valid).

3. If the staked asset has an explicit obligation, then ensure the first
output on stakeoutput is of a preasset with the same amount of cants
and the same obligation sent to the stake address.7

4. All outputs in stakeoutput except possibly the first is explicitly must
be marked as a reward and have a lock in the obligation at least
as long as the value given by reward locktime. Furthermore, all the
outputs must be sent to the stake address. If the first output in
stakeoutput is not marked as a reward, then it must also be sent to
the stake address, must be a Currency asset with the same number of
cants as the staked asset and must have the same obligation (possibly
the default None obligation) as the staked asset.

5. The compact tree of the block must support the coinstake transaction
and it must have a reward at least8 as high as the value given by
rewfn.

6. There are no duplicate transactions listed in blockdelta stxl.

7. The graft in prevledgergraft is valid.

8. Each transaction in blockdelta stxl has valid signatures, is valid and
is supported by the compact tree of the block. Furthermore, none
of these outputs are marked as rewards, none of these transactions
spend the asset being staked. Finally, each transaction consumes at
least as many cants as required.

9. No two transactions in blockdelta stxl spend the same input.

10. No two transactions in blockdelta stxl create ownership as an object
(resp., as a proposition) at the same term address.

11. If a transaction in blockdelta stxl creates ownership as an object
(resp., as a proposition) at a term address, then the output of the
coinstake transaction does not create the same kind of ownership at
the term address.9

12. If proof of forfeiture is given, then check it is valid and remember the
number of cants being forfeited.

7This is to support “loaning” assets for staking.
8This is to allow for collection of fees and of forfeiture of recent awards. The fact that the

output is not too high is guaranteed later.
9It would make sense to simply disallow creation of non-currency assets in the coinstake

transaction, but this is not currently the case.

12.8. DATABASES FOR BLOCK INFORMATION 105

13. Let C be the result of transforming the compact tree of the block
(ctree of block) using the transactions of the block (txl of block). The
hash root of C must be newledgerroot.

14. Let τ = (ι, o) be the transaction of the block. The following must
hold:

– The cost of the outputs of τ (see out cost) is equal to the sum of
the assets being spent along with the reward (rewfn) and (possi-
bly) the number of cants being forfeited.

– The transformation of the current theory tree by o must have
hash root newtheoryroot.

– The transformation of the current signature tree by o must have
hash root newsignatroot.

Upon success, valid block returns the transformed theory tree and the
transformed signature tree. Upon failure, either None is returned or
an exception is raised.

12.8 Databases for Block Information

There are three databases for blocks, all using the hash of the block header as the
key. The module DbBlockHeader is a database for block headers (implemented
using Dbbasic2keyiter) and the module DbBlockDelta is a database for block
deltas (implemented using Dbbasic2).

12.9 Chains

There are additional types blockchain and blockheaderchain. These can be used
to represent (nonempty) chains of blocks or block headers.10 In each case the
representation is as a pair where the first component should be the most recent
block of block header and the second component is a list of the previous blocks
or block headers in reverse order.

The variable genesisledgerroot gives the ledger root of the initial compact
tree with the initial distribution. The value is (as of September 2016):

fc25150b4880e27235d4878637d32f0ffe2280e6

• blockchain headers converts a block chain into block header chain by drop-
ping the block deltas.

• ledgerroot of blockchain takes a block chain and returns the value of newledger-
root in the latest block header data.

• valid blockchain checks if a block chain is valid at a given height. This
requires checking the validity of each block and that each block header is

10It is not clear if this is explicitly needed.

106 CHAPTER 12. BLOCKS AND BLOCK CHAINS

a valid successor to the previous block header. It also requires keeping up
with the theory tree and signature tree. In the case of the genesis block,
the prevblockhash should be None, the prevledger should have hash root
genesisledgerroot, the tinfo should be composed of the values in genesisc-

currentstakemod, genesisfuturestakemod and genesistarget and the deltatime

should be 600.11

• valid blockheaderchain checks the validity of a block header chain. It is
similar to valid blockchain but only checks the headers are valid instead of
the full blocks.

11Alternatively, one could set a “genesis timestamp” and enforce that the deltatime of the
genesis block is the difference between the time stamp of the genesis block and the fixed
genesis timestamp.

Chapter 13

Block Trees

The module blocktree (blocktree.ml and blocktree.mli) contains code re-
lated to keep up with the current tree of blocks and the current best block.
Other various information is also included here.

13.1 Block Tree

The main data type in the module blocktree is the type blocktree with one
constructor BlocktreeNode (described below). Each node can be thought of as
between a block and possible successor blocks. Enough information is included
in the node to determine if a new block (header) is a valid successor block
(header). The root of the tree is the “genesis node” which contains information
about the initial ledger tree, initial stake modifier and initial target. Qeditas
has no “genesis block” in the traditional sense. The first block would be a valid
child of the genesis node.

Nodes to the tree are added as headers are received (or staked) even if the
corresponding block delta has not yet been received. In order to distinguish
between these cases there is a type validationstatus with three constructors:
Waiting (meaning the block delta is being requested from peers), ValidBlock

(meaning a delta has been received and checked to be part of a valid block
when combined with the header) or InvalidBlock (meaning there is no delta
making the header part of a valid block, though it is not clear how this could
be determined).

The single constructor BlocktreeNode of the type blocktree takes 13 argu-
ments:1

• an optional blocktree giving the parent, which is None for the genesis node
(and possibly for some checkpoint nodes).

• a reference to a list of hash values, giving a list of addresses which have
staked in some child of this node up to six levels deep. This is to be used

1This probably should be a record type.

107

108 CHAPTER 13. BLOCK TREES

to identify double-staking which can be punished by proof-of-forfeiture.

• an optional hash of the previous block header, which is None for the genesis
node.

• an optional root of the current theory tree (see ttree in Chapter 9).

• an optional root of the current signature tree (see stree in Chapter 9).

• the current ledger hash root.

• the current target information (including the current and future stake
modifier).

• the current time stamp.

• the current cumulative stake.

• the current block height.

• a reference to the current validation status (of type validationstatus).

• a reference to a boolean indicating if the block above the node has been
blacklisted, so children should not be considered valid.

• a reference to a list of children, which gets updated as successor blocks
are found.

There are a variety of functions for obtaining the information above from a node
in the tree: node recent stakers, node prevblockhash, node theoryroot, node signaroot,
node ledgerroot, node targetinfo, node timestamp, node cumulstk, node blockheight,
node validationstatus and node children ref.

The function eq node tests if two nodes are equal by simply checking if they
have the save previous block hash. The usual equality operation cannot be used
since the target is of type big int whose values are (often) abstract.

The variable genesisblocktreenode is initialized to be the node with the genesis
ledger root, genesis target information and genesis time stamp. A child of this
node corresponds to a block at height 1.

The hash table blkheadernode associates hash values with their corresponding
node in the block tree.

The functions process new header, process new header a, process new header aa,
process new header ab and process new header b are used to check a header is
valid and, if so, create a node for it and enter the node into the block tree. If
the previous block hash in the header does not correspond to a node in the tree
(according to blkheadernode), the new header is considered an orphan and put
into the hash table orphanblkheaders. The parent header of an orphan block
header are requested using find and send requestdata, if possible. When a new
header is processed, it may mean previously orphaned headers are no longer
orphaned, at which point the headers should be removed from orphanblkheaders

13.2. CHECKPOINTS 109

and new nodes in the block tree should be added. (The handling of orphan
blocks has not been tested.)

In addition, there is a list earlyblocktreenodes which contains headers which
have been received but whose time stamps are in the future. These are intended
to be delayed until the appropriate time arrives (although the code to handle
them later does not seem to be written).

The hash table tovalidate is a set of hashes of headers where we are still
waiting to validate the corresponding block delta.

13.2 Checkpoints

The checkpoint public key is given in this module by checkpointspubkeyx and
checkpointspubkeyy. If the corresponding private key is given on the command
line or in the configuration file, then checkpointsprivkeyk is set to the corre-
sponding integer. (The key is for the uncompressed address, and this fact is
hard-wired into the code.)

The value lastcheckpointnode is set to the most recent checkpoint, which is
the genesis node by default.

The hash table checkpoints associates header hashes with pairs (h, σ) where
h is a block height and σ is a signature of the hash by the checkpoint key.

13.3 Best Node

The current block chain is determined by finding the “best node” in the block
tree, i.e., the node with the highest cumulative stake. We sometimes allow the
best node to be awaiting validation and sometimes require the best node to be
fully validated.

The variable bestnode is set to the current best node. This gets reset when
a new block is staked, if a new header is received or if Qeditas gives up wait-
ing for a node to be validated. In the last case, we may want to find the
best validated node. The value of bestnode should never be updated directly,
but instead should be updated by calling update bestnode. Given a node n,
update bestnode sets bestnode to n, sets netblkh to the current block height
(technically, the height of the next block to be found) and, if the private key for
signing checkpoints is known, the block which is now 36 blocks deep is signed
as a checkpoint, lastcheckpointnode is updated and the checkpoint is broadcast
(as inventory) to all peers.

The function initblocktree creates a genesis block tree node and initializes the
values genesisblocktreenode, lastcheckpointnode and bestnode accordingly. Then
init headers is called to traverse all known block headers from the block header
database DbBlockHeader and create corresponding nodes in the block tree.

The function find best validated block from finds the descendent node with
validation status ValidBlock (and which is not blacklisted) with the highest
cumulative stake. The best node and cumulative stake found so far are ex-

110 CHAPTER 13. BLOCK TREES

tra arguments to compare against. The function find best validated block calls
find best validated block from starting from the current value of lastcheckpointn-
ode and calls update bestnode with the result.

The function print best node gives the hash of the last block header of the
current best node (or endicates it is the genesis node if there is no previous
header).

The function record recent staker climbs an indicated number of parents from
a given node and inserts a given address into the recent stakers of the node. This
information is then used by is recent staker to determine if an address has staked
on some descendent of a node (up to some depth). The relevant depth is 6, but
the functions are recursive, so the depth arguments i are generic.

13.4 Other Local Data

The hash table stxpool associates hash values with corresponding signed transac-
tions and published stx records which of these transactions have been published
(broadcast to peers).

The hash table thytree associates hash values with the root of a corresponding
theory tree ttree. The function lookup thytree looks up the theory tree given an
optional hash value, where the default value of None returns the empty theory
tree None. For the moment, Qeditas has only been tested with empty theory
trees.

Similarly, there is a hash table sigtree which associates hash values with the
root of a corresponding signature tree stree. The function lookup sigtree looks
up the signature tree given an optional hash value, where the default value of
None returns the empty signature tree None. Again, Qeditas has only been
tested with empty signature trees.

13.5 Networking Code

Since the blocktree module has access to the current state of the block chain,
a function send inv is defined to collect the most recent inventory data (trans-
actions, block headers and block deltas) to send to new peers. The networking
code obtains access to the send inv function via the reference send inv fn which
is set to send inv in blocktree.

The functions publish stx and publish block add transactions and blocks to
the local database and broadcast them as new inventory to peers.

In addition, most of the implemented message handlers for the networking
code (see Chapter 7) are given in the blocktree module by associating functions
with message types in the hash table msgtype handler. Here are the message
types handled in blocktree:

• Inv: The payload of an inventory message should be a 32-bit integer n in-
dicating how many inventory items there are followed by n triples (τ, h, k)
where τ is a message type (as a byte, indicating the kind of object in the

13.5. NETWORKING CODE 111

inventory), h is a block height (as a 64-bit integer) and k is a hash value
(indicating the identifier of the object in the inventory). The handler reads
these triples and determines whether or not to request the corresponding
objects. Headers will be requested if they are new and those to be re-
quested are collect into a list to be requested in batches of at most 255
headers (by req header batches). Block deltas are requested if they are
new and the corresponding header is waiting to be validated (as indicted
by tovalidate). If a signed transaction is new, then the corresponding un-
signed transaction is requested. If the transaction of a signed transaction
is known but the signatures are not, the signatures are requested. A check-
point is requested unless it is a known checkpoint or would be an ancestor
of the current checkpoint. No other inventory is immediately requested.
All inventory is inserted into the rinv field of the connection state in case
we need to request something later.

• GetHeader: The payload contains a hash value. If the corresponding
header has already been sent to the node (as recorded in sentinv), then it
is not resent. Otherwise, the header is loaded from the database and sent
to the peer in a Headers message. If the header is not in the database, the
message is ignored.

• GetHeaders: The payload contains a byte n indicating the number of head-
ers being requested, followed by n hash values. The corresponding headers
which have not yet been sent are collected and send to the peer in a Headers
message.

• Headers: The payload contains a byte n indicating the number of headers
being sent, followed by n hash values and block headers. Each header must
hash to the given hash value, otherwise this is logged and the connection
is marked as banned by setting banned in the connstate to true. Each new
header is checked to be valid and, if so, processed by process new header ab

(which assumes the given header is valid). If a received header is not valid,
this is logged and the connection is marked as banned by setting banned

in the connstate to true.

• GetBlockdelta: The payload contains a hash value identifying a block. If
the corresponding block delta has not yet been sent to the peer, it is sent
in a Blockdelta message.

• Blockdelta: The payload contains a hash value and a block delta. If the
hash value is of a block for which the block delta is already known, then the
handler stops (before deserializing the block delta). Otherwise, the node
for the corresponding header is found in the block tree. If there is no such
node in the block tree, the message is ignored. Assume there is such a node
n. We check its validation status. The case we are interested in is when the
validation status is Waiting but there is not yet a candidate blockdelta to
validate. In this case we find the parent node p of n. If the parent node is
already known to correspond to a valid block (or there is no parent node),

112 CHAPTER 13. BLOCK TREES

then the block delta is deserialized and the function validate block of node

is called to check that the new block is valid and update the validation
status of the node. (Assuming the block is valid, validate block of node

also traverses children which have block deltas waiting to be validated
and tries to validate these.) If the parent node has not yet been validated,
then the block delta is deserialized and stored (along with the connection
state of the peer) with the Waiting status. In principle it will be validated
after its ancestors have been validated.

• GetTx: The payload is a hash value which should be a transaction id.
Unless the transaction has already been sent to the peer, the (unsigned)
transaction is looked up in stxpool or DbTx and sent as a Tx message.

• Tx: The payload is a hash value h followed by an unsigned transaction (of
type tx). If h is the transaction id of a transaction in the DbTx database,
we ignore it. Likewise, if the transaction was not explicitly requested from
the peer, we ignore it. Otherwise, we deserialize the transaction and check
that it hashes to h and put it into the DbTx database.

• GetTxSignatures: The payload is a hash value which should be a transac-
tion id. Unless the transaction signatures have already been sent to the
peer, the transaction signatures are looked up in stxpool or DbTxSignatures
and sent as a TxSignatures message.

• TxSignatures: The payload is a hash value h and a collection of transaction
signatures (see Chapter 10). If h is the transaction id of a transaction in
the DbTxSignatures database, we ignore the message. Likewise, if the
transaction signatures were not explicitly requested from the peer, we
ignore the message. Otherwise, the signatures are deserialized and checked
to be complete and valid (for some block height). Assuming the signatures
are complete and valid, the signatures are saved in DbTxSignatures and
added to the transaction in stxpool.

• GetCheckpoint: The payload is a hash value, which should be the hash of a
block header which has been signed as a checkpoint. If the checkpoint ex-
ists and has not previously been sent to the peer, it is sent as a Checkpoint

message.

• Checkpoint: The payload is a hash value h (identifying a block header), a
block height i and a signature σ. The signature σ is checked to be a valid
signature of h for the public key for checkpoints. Assuming it is valid,
the pair (i, σ) is added to checkpoints. If the hash value h was previously
blacklisted in DbBlacklist, the entry is removed from the blacklist. Assume
there is a node n corresponding to h in the block tree. If the node n is
marked as blacklisted, this is reset to false while all the siblings of n (if
there are any) are marked as blacklisted. The node is set to have validation
status Valid (independent of whether a block delta was ever received). If

13.6. DUMPING THE STATE 113

there is no node corresponding to h in the block tree, a node is simply
created (with no parent).2

13.6 Dumping the State

The function dumpblocktreestate writes a large amount of information about the
current block tree state into a channel (presumably of an open text file). This
is for debugging purposes.

2This could cause confusing with the genesis node in some parts of the code, and should
probably be handled differently.

114 CHAPTER 13. BLOCK TREES

Chapter 14

Commands

The commands module (commands.ml and commands.mli) contains code for
handling top level commands (from the command line interface).

The module commands is intended to support a variety of commands a user
may need. At the moment it only supports limited wallet and transaction
creation commands. Some state information is held in this module (although it
likely should be moved elsewhere).

• walletkeys contains the private keys in the wallet. More specifically it is a
list of values of the form (k, b, (x, y), w, h, a) where k is the private key, b
is a boolean indicating if it is for the compressed public key, (x, y) is the
public key, w is the string base-58 WIF format, h is the 20-byte hash value
corresponding to the p2pkh address and a is the string base-58 Qeditas
p2pkh address.

• walletp2shs contains entries of the form (h, a, b) where h is the 20-byte
hash value of a p2sh address, a is the base-58 Qeditas p2sh address and
b is the sequence of bytes giving the script corresponding to h. Note that
this does not directly give a way of “signing” for the p2sh address.

• walletendorsements contains the endorsements in the wallet. In particular
it is a list of values of the form (α, β, (x, y), b, σ) where α and β are pay
addresses,1 (x, y) is the public key for α, b is a boolean indicating if α
is the address for the compressed public key and σ is a signature for a
Bitcoin message of the form “endorse β” (or “testnet:endorse β” in the
testnet) signed with the private key for α. The private key for β should
be in walletkeys and this private key along with the endorsement means
the wallet can sign for α.2

1Actually, in what is implemented we assume they are both p2pkh addresses. In principle
endorsements involving p2sh addresses are supported by the code in sigant and script, but
support has not been implemented in commands.

2The endorsement mechanism gives Bitcoin users a way to claim their part of the initial
distribution without revealing their private keys.

115

116 CHAPTER 14. COMMANDS

• walletwatchaddrs contains addresses to “watch.”

• stakingassets contains a list of assets which the node can stake. This
changes as bestnode from blocktree changes.

• storagetrmassets is intended contain a list of assets at term addresses which
the node can use as proof-of-storage to improve the chances of staking.
Currently it is unused.

• storagedocassets is intended to contain a list of documents at publication
assets which the node can use as proof-of-storage to improve the chances
of staking. Currently it is unused.

• txpool is a hash table associating hash values (transaction ids) with signed
transactions. This is loaded and saved to the file txpool. The intention
is that this holds transactions which have been published but are not yet
included in a block.

The following functions are for loading and saving the state in certain files.

• load txpool sets txpool by loading the contents fo txpool.

• load wallet sets walletkeys, walletp2shs, walletendorsements and walletwatchad-

drs by loading the file wallet.

• save wallet saves the current wallet contents (the values of walletkeys, wal-
letp2shs, walletendorsements and walletwatchaddrs) in wallet.

• printassets prints the assets from the current ledger tree (the ledger tree
with root in the current best node) at the addresses mentioned in the
wallet. If some of the relevant parts of the ledger are missing and there
are connections to peers, an attempt is made to request the relevant in-
formation from peers. If this is taking too long, it may give up and print
partial information (meaning that balances appear smaller than they are).
Calling printassets multiple times with sufficient peers should eventually
fetch enough information about the ledger to give all assets and the full
balance.

• printassets in ledger prints the assets in a ledger with an explicitly given
ledger root at the addresses mentioned in the wallet.

• printctreeinfo prints a summary of information about the compact tree
with the given hash root.

• printctreeelt prints the ctree element (complete information for exactly 9
levels) with the given hash root.

• printhconselt prints the hcons element with the given hash root, meaning
it prints the asset id and optionally the root for the next hcons element.

117

• printasset prints the asset with the given asset hash. Note: the hash of
the asset must be given, not the asset id. The keys to the assets in the
database are the asset hash (given by hashasset), not the asset id (given
by assetid).

• printtx prints the transaction with the given hash root.

• btctoqedaddr parses a Bitcoin address (base-58 representation) and prints
the corresponding Qeditas address (base-58 representation).

• importprivkey imports a private key given in Qeditas WIF.

• importbtcprivkey imports a private key given in Bitcoin WIF.

• importendorsement imports an endorsement.

• importwatchaddr imports a Qeditas address to watch.

• importwatchbtcaddr imports a Bitcoin address in order to watch the cor-
responding Qeditas address.

• createsplitlocktx creates a transaction to split an asset into several assets
with a given lock height.

• signtx signs a transaction.

• savetxtopool saves a transaction to the local transaction pool (without
publishing it).

• sendtx publishes a transaction by sending it to peers.

118 CHAPTER 14. COMMANDS

Chapter 15

Staking Code

The staking code is part of the top level file qeditas.ml. A thread is created
via the function stakingthread if the configuration variable staking is set to true.
stakingthread is a loop which takes the current value of bestnode and tries to
find an asset which can stake the next block within the next hour or two.

The hash table nextstakechances associates block header hash values with
information about the next chance to stake on top of the corresponding block.
The information is of type nextstakeinfo which has to constructors:

• NextStake(i, α, h, b, ω, v, c) meaning the next chance to stake is at type i

with the currency asset worth v cants with id h, birthday b and obliga-
tion ω held at (p2pkh) address α and that the resulting block will have
cumulative stake c.

• NoStakeUpTo(i) meaning there is no chance to stake up to time i.

The entries in nextstakechances are computed by the function compute staking chances.
compute staking chances takes a blocktree node n and two integers t0 and t1 giv-
ing the starting time and ending time and searches for the first i ∈ [t0, t1]
where some held currency asset can stake. First, it collects the assets held at
p2pkh addresses where either a private key or an endorsement is in the wal-
let. These assets are put into stakingassets from the commands module. If
compute staking chances finds an asset that can stake, the relevant information
is put into nextstakechances. If none is found, NoStakeUpTo(t1) is put into
nextstakechances.

Assume there is an asset which can stake. If the next chance to stake is
greater than 10 seconds away, the thread sleeps for a minute and checks again
(in case the best node has changed in the past minute). If it is within 10 seconds
of the time to stake, the block header and delta are constructed and published.1

1A final validity check is done before publishing the block. In principle all blocks con-
structed should be valid, but in practice sometimes invalid blocks are constructed. This is
presumably due to bugs.

119

120 CHAPTER 15. STAKING CODE

If no asset can stake within the next hour, the thread continues sleeping for
1 minute before rechecking the current state. Eventually either the best node
changes or enough time has past that we call compute staking chances again for
more information.

In some cases the exception StakingProblemPause is raised. If this happens,
it is considered a problem caused by a bug. The staking thread deals with this
by pausing the thread for an hour and then trying to stake again in the new
state.

Chapter 16

Top Level Code

The file qeditas.ml is used to create an executable qeditas. This executable
starts several threads for networking, staking (optionally) and finally for a
console-style interface.

To understand what the executable qeditas does, see the code near the end
of the file qeditas.ml. We describe the tasks qeditas executes briefly. The
function initialize is called first and is described in Section 16.1. Next the func-
tion initnetwork is called, see Section 16.2. If the configuration variable staking

is set to true, then a thread is created which calls the function stakingthread, see
Chapter 15. Finally, a main loop begins for reading and processing commands
from the console begins, see Section 16.3.

16.1 Initialization

The initialize function begins by checking the command line arguments for an
option of the form -datadir=... which would override the default data direc-
tory (usually .qeditas in the user’s home directory). It then reads the config
file qeditas.conf in the data directory. This may override some default values
in the config module. It then reads the other command line arguments which
may again override some values in the config module. If the testnet configu-
ration variable is true (which is mandatory at the moment), then the testnet

subdirectory of the main data directory is used. This implies the testnet will
have its own databases, its own wallet, and so on. The database directory is set
and configured and a log file is opened.

If there is a .lock file in the data directory, then Qeditas exits to prevent
two instances of Qeditas from using the same data directory. Otherwise, Qed-
itas creates a .lock file in the data directory and sets the variable exitfn to a
function which calls saveknownpeers (to remember the peers discovered during
the session) and remove the .lock file. At this point, the only way Qeditas
should exit is via a call to exitfn.

The database is initialized by calling dbconfig with a db subdirectory of the

121

122 CHAPTER 16. TOP LEVEL CODE

data directory and then calling dbinit on each database.
Next the log file is opened (via openlog).
The code then checks if either the seed variable in config has been set to a

nonempty string. (It should be a 40 character hex string.) The current code in
setconfig sets seed to

68324ba252550a4cb02b7279cf398b9994c0c39f

unless it is specifically set in the configuration file or on the command line. The
value above is the last 20 bytes of the hash of Bitcoin block 378800, and was a
value included only for testing purposes. The intention was to choose a Bitcoin
block height roughly one week in the future when the time came for Qeditas to
launch. The last 20 bytes of that block hash would be the value for seed. The
purpose of this value is to initialize the current stake modifier and the future
stake modifier (see set genesis stakemods). These stake modifiers affect which
assets will stake within the first 512 blocks. In particular it affects the genesis
block (at Qeditas block height). For the launch to be fair, these stake modifiers
should not be predictable before launch. This goal could be accomplished in
other ways. The possibility is left open in the future that seed is not set but
that a checkpoint has been set so that a node can begin following the block
chain from that checkpoint. (The full history is not required. Each ledger tree
contains the full information required to continue.)

The function initblocktree from the blocktree module is called. In particular,
this processes all currently known headers in the database to build a block tree
and determine the current best node (and hence block chain).

If the testnet configuration variable is set, then the difficulty is decreased
significantly (setting genesistarget to 2200 so that finding a hit to stake is not
difficult and setting max target to 2208).

Next the wallet and the transaction pool are loaded using load wallet and
load txpool from the commands module (see Chapter 14).

A random 64-bit nonce is generated in order to prevent the node from con-
necting to itself. The variable this nodes nonce from the net module is set to
the nonce.

16.2 Initialization of the Network

The initnetwork function starts several threads to handle connections to the
network. First, if the configuration variable ip has been set to an IP-address,
then a listener socket is opened and a thread is started to listen for incoming
connections (using the function netlistener). Then the function netseeker is called
which loads the known peers and calls netseeker loop. The loop tries to connect
to peers every 10 minutes, unless the maximum number of connections has been
reached.

Each time a connection is created, threads are created for listening to the
peer and for sending messages to the peer. Most of this networking code is in
the net module which is described in Chapter 7.

16.3. MAIN LOOP 123

16.3 Main Loop

This main loop prints a prompt (see the configuration variable prompt), reads
a line and sends this line to do command. If the user presses CTRL-D, the
End of file exception is raised resulting in the process exiting. The process will
also exit if the user issues the command exit. A command may also raise the
exception Exit which will be silently ignored and the loop continues, issuing
prompt and waiting for the next command. All other exceptions are displayed
to the user before the loop continues.

The supported commands are not fully implemented. The code for executing
most commands is in the commands module (see Chapter 14). Here are a few
that are currently supported:

• exit - exit qeditas. (CTRL-D also exits.)

• printassets [ledger root in hex] - print the assets held at the addresses in the
wallet in the ledger with the given root. This only prints the visible assets.
Some assets will be missing if the local approximation of the compact tree
does not include the assets explicitly. If the ledger root is omitted, then
the ledger root of the most recent best block is used.

• importprivkey - import a private key in Qeditas WIF format.

• importbtcprivkey - import a private key in Bitcoin WIF format.

• importwatchaddr - import a Qeditas address for watching assets, without
importing the corresponding private key.

• importwatchbtcaddr - import a Bitcoin address as a Qeditas address for
watching assets, without importing the corresponding private key.

• importendorsement - import a Bitcoin signed message to allow a Qeditas
private key (held in the wallet) to sign for a corresponding Bitcoin address.
This is the safe way to claim assets in the initial distribution.

• btctoqedaddr - give the Qeditas address that corresponds to a given Bitcoin
address.

• addnode ip:port [add—remove—onetry] - explicitly add or remove a con-
nection to a node.

• clearbanned - call clearbanned in net to clear all banned nodes from memory.

• listbanned - list all banned nodes in bannedpeers from net.

• bannode ip:port - call bannode in net to add the given node to the set of
banned nodes.

• getpeerinfo - list all current connections.

• nettime - print the current network time and median skew.

124 CHAPTER 16. TOP LEVEL CODE

• printtx txid - call printtx in commands to print the tx with the given id.

• printasset assetid - call printasset in commands to print the asset with the
given id.

• printhconselt hconseltroot - call printhconselt in commands to print the
hcons element with the given root.

• printctreeelt ctreeeltroot - call printctreeelt in commands to print the ctree
element with the given root.

• printctreeinfo ctreehashroot - call printctreeinfo in commands to print infor-
mation about the ctree with the given root.

• createsplitlocktx address assetid numouts lockheight fee [newaddress [newobli-
gationaddress [ledgerroot]]] - create a transaction with the given asset at
the given address as the only input, with the number of outputs indicated
where each output has the given lockheight. The values in the outputs
are evenly divided (except possibly the last output) after the fee has been
subtracted. If no newaddress is given, then the output is to the same
address and the same address is used in the new obligations. If newad-
dress is given and newobligationaddress is not, then the outputs are to
newaddress and newaddress is used in the obligations. If newaddress and
newobligationaddress are given, then the outputs are to newaddress and
newobligationaddress is used in the obligations. If ledgerroot is given, then
the corresponding ctree is used to look up the asset for the input. (By
default, the ledger root of the current best node is used.) Most of the
work is done by the function createsplitlocktx in commands.1

• signtx txinhex - call signtx in commands to (partially or completely) sign
the transaction, giving the signed transaction in hex as output.

• savetxtopool txinhex - call savetxtopool in commands to save the transaction
to the local pool.

• sendtx txinhex - call sendtx in commands to send the given transaction to
peers.

• bestblock - print information about the current best node (bestnode from
blocktree).

• difficulty - print the difficulty target of the current best node (bestnode
from blocktree).

• blockchain - print the header hash and ledger root of the last 1000 blocks
of the current block chain.

1The purpose of this specialized command is to easily split one large asset into several
smaller assets which can stake independently. Ultimately, there would need to be a more
general command for creating transactions.

16.3. MAIN LOOP 125

• dumpstate filename - dump information about the current state to the
given file, as a text file. This is for debugging purposes.

Index

-datadir, 10
.lock, 121
.qeditas, 9, 11, 121
/dev/random, 9, 12, 16
g, 24
n, 24
p, 23

add, 23
add to cache, 39
add vout, 72
addknownpeer, 34
addnode, 123
addp, 24
Addr, 17, 29
addr, 20
addr asset, 71, 72
addr assetid, 71, 72, 77, 88, 92, 94
addr bitseq, 20
addr preasset, 71–77, 93
addr qedaddrstr, 25
addrfrom, 32
Alert, 30
All, 46
AntiCheckpoint, 30
Ap, 46
archived, 41
Asset, 30
asset, 67, 70
asset id, 67
asset value, 72
asset value sum, 72
assetbday, 71
assetid, 71, 76, 117
assetobl, 71
assetpre, 71
Assets, 67, 68

assets, 68
assets, 34, 41, 52–54, 67, 71
assetsunittests.ml, 67

balanced, 89
banned, 32, 33, 111
BannedPeer, 35
bannedpeers, 35, 123
bannode, 123
banpeer, 35
Base, 45
base58, 24
basicunittests.ml, 14, 15, 23
bestblock, 124
bestnode, 109, 116, 119, 124
beta count, 60
BetaLimit, 60, 61, 64
big int, 12, 13, 16, 23, 96, 99, 108
big int hashval, 18
big int md256, 16
big int sub int32, 15
binders, 45
birthday, 67
bitseq addr, 20
blacklist, 41
blkheadernode, 108
Block, 30
block, 102
block, 11, 41, 78, 95, 103
blockchain, 105, 124
blockchain headers, 105
Blockdelta, 30, 111
blockdelta, 102, 103, 111
blockdelta stxl, 103, 104
Blockdeltah, 30
blockheader, 99, 103
blockheader stakeasset, 101

126

INDEX 127

blockheader succ, 101
blockheaderchain, 105
blockheaderdata, 99, 101
blockheadersig, 99, 100
Blocks, 95
blocksignat, 100
blocksignatendorsement, 100
blocksignatfcomp, 100
blocksignatrecid, 100
blocktree, 34, 107, 110, 116, 119, 122,

124
blocktree.ml, 10, 107
blocktree.mli, 107
BlocktreeNode, 107
bool, 41
Bounty, 68, 92
branch

dev, 7, 8, 14, 15, 23, 44, 67, 77, 81
initdistr, 8
master, 7, 8, 14, 15, 23, 44, 67,

77, 81
testing, 7, 8, 14, 15, 23, 44, 67,

77, 81
broadcast inv, 35
broadcast requestdata, 35
btcaddrstr addr, 25
btctoqedaddr, 117, 123

cache1, 39
cache2, 39
cant, 68
CBin, 85, 87
cgraft, 94
cgraft valid, 94
CHash, 84–88, 94
check bhl, 102
check doc, 66, 90
check doc rec, 66
check hit, 98, 101
check hit a, 99, 101
check hit b, 98, 99
check move obligation, 79
check p2sh, 27
check poforfeit, 102
check poforfeit a, 102
check polyprop, 62

check postor pdoc, 98, 99
check postor pdoc r, 97, 98
check postor tm, 98, 99
check postor tm r, 97, 98
check prop, 62
check propofpf, 63
check ptp, 61
check signaspec, 65, 66, 90
check signaspec rec, 65
check spend obligation, 79
check theoryspec, 64, 90
check tp, 61
check tpoftm, 62
check tx in signatures, 77, 79
check tx out signatures, 79
CheckingFailure, 61, 63, 64
checkmultisig, 27
Checkpoint, 30, 112
checkpoints, 109, 112
checkpointskey, 10
checkpointsprivkeyk, 109
checkpointspubkeyx, 10, 109
checkpointspubkeyy, 10, 109
checksig, 27
CLeaf, 84, 87
clearbanned, 35, 123
CLeft, 84, 87
close to unlocked, 82
closed, 57
closelog, 11
coin-age, 83
coinage, 83, 99
coinstake, 103
command

addnode, 123
bannode, 123
bestblock, 124
blockchain, 124
btctoqedaddr, 123
clearbanned, 123
createsplitlocktx, 124
difficulty, 124
dumpstate, 125
exit, 123
getpeerinfo, 123
importbtcprivkey, 123

128 INDEX

importendorsement, 123
importprivkey, 123
importwatchaddr, 123
importwatchbtcaddr, 123
listbanned, 123
nettime, 123
printasset, 124
printassets, 123
printctreeelt, 124
printctreeinfo, 124
printhconselt, 124
printtx, 124
savetxtopool, 124
sendtx, 124
signtx, 124

command line argument
-datadir, 10

commands, 115, 119, 122–124
commands.ml, 115
commands.mli, 115
compact tree of a block, 103
compute staking chances, 119, 120
config, 9, 121, 122
config.ml, 9
config.mli, 9
configure, 9
connlistener, 33
connmutex, 32
connsender, 33
connstate, 32–34, 111
conntime, 32
constructor

Addr, 29
Alert, 30
All, 46
AntiCheckpoint, 30
Ap, 46
Asset, 30
Base, 45
Block, 30
Blockdelta, 30, 111
Blockdeltah, 30
BlocktreeNode, 107
Bounty, 68, 92
CBin, 85, 87
CHash, 84–88, 94

Checkpoint, 30, 112
CLeaf, 84, 87
CLeft, 84, 87
CRight, 85, 87
CTreeElement, 30
Currency, 68
DB, 45
DocConj, 51, 66
DocDef, 51, 53, 66, 76
DocKnown, 51, 53, 66
DocParam, 51, 53, 66
DocPfOf, 51, 54, 66, 76
DocPublication, 70, 76, 90, 91, 97
DocSigna, 51, 66
get asset, 76
get ctree element, 87
get hcons element, 86
GetAddr, 30
GetAsset, 30
GetBlock, 30
GetBlockdelta, 30, 111
GetBlockdeltah, 30
GetCheckpoint, 31, 112
GetCTreeElement, 30
GetData, 29
GetHConsElement, 30
GetHeader, 29, 111
GetHeaders, 30, 111
GetSTx, 29
GetTx, 29, 31, 112
GetTxSignatures, 29, 112
HCons, 83, 84
HConsElement, 30
HConsH, 83, 84, 86
Headers, 30, 111
HHash, 83–86
HNil, 83, 84, 86
Imp, 46
Inv, 29, 35, 110
InvalidBlock, 107
Lam, 46
Marker, 70, 90, 91
Mempool, 30
MNotFound, 29
NehCons, 84
NehConsH, 84, 86

INDEX 129

NehHash, 84, 86, 87
NewHeader, 30
NextStake, 119
NoStakeUpTo, 119
OwnsNegProp, 54, 69, 77, 91, 92
OwnsObj, 69, 77, 90–92
OwnsProp, 69, 77, 90–92
Ping, 30
Pong, 30
PostorDoc, 97, 98
PostorTrm, 97, 98
Prim, 46
Prop, 44
Reject, 30
RightsObj, 69, 75, 89
RightsProp, 70, 75, 89
SignaDef, 50, 65
SignaKnown, 50, 53, 65
SignaParam, 50, 52, 65
SignaPublication, 70, 90, 91
SignaSigna, 50, 65, 66
STx, 30
TheoryPublication, 70, 90, 91
ThyAxiom, 49, 65
ThyDef, 49, 65
ThyPrim, 49, 65
TmH, 46, 97
TpAll, 45
TpVar, 44
TTpAll, 46
TTpAp, 46
TTpLam, 46
Tx, 30, 31, 112
TxSignatures, 30, 112
Valid, 112
ValidBlock, 107, 109
Verack, 29, 33
Version, 29, 33
Waiting, 107, 111, 112

Coq function
ctree supports tx, 88

Coq module
Addr, 17
Assets, 67, 68
Blocks, 95
CryptoHashes, 17

CryptoSignatures, 26
CTreeGrafting, 94
CTrees, 81
LedgerStates, 81
MathData, 44
MTrees, 81
Transactions, 77

Coq type
asset, 67
ctree, 81
hashval, 17
hlist, 81
mtree, 81
nehlist, 81
obligation, 67
preasset, 67
signat, 26
statefun, 81
sTx, 77
Tx, 77

count deleted, 39
count index, 39
count obj rights, 75, 89
count prop rights, 75, 89
count rights used, 75, 89
creates the negated proposition, 76
creates the object, 76
creates the proposition, 76
createsplitlocktx, 117, 124
CRight, 85, 87
cryptocurr, 23, 24
CryptoHashes, 17
CryptoSignatures, 26
ctre, 34, 41, 77, 81, 94
ctree, 81, 84, 85, 100
ctree option, 84
ctree addr, 85
ctree cgraft, 94
ctree element a, 87
ctree element p, 87
ctree hashroot, 85
ctree lookup asset, 85, 92
ctree lookup input assets, 88, 92
ctree of block, 103, 105
ctree rights balanced, 89
ctree super element a, 87

130 INDEX

ctree super element p, 87
ctree supports tx, 88, 92
ctree supports tx 2, 77, 88, 92
CTreeElement, 30
CTreeGrafting, 94
CTrees, 81
CTrees.v, 88
ctregraft, 81, 94
ctregrafting, 94
ctreunittests.ml, 81
cumul stake, 99
currblock, 16
Currency, 68
currhashval, 16
curve y, 24

data, 38–40
datadir, 9–11
datadir from command line, 10
DB, 45
db, 37
db, 121
DbArchived, 41
DbAsset, 75, 86
Dbbasic, 37–39, 41
Dbbasic2, 37, 38, 40, 41, 75, 80, 86, 87,

105
Dbbasic2keyiter, 41, 105
DbBlacklist, 41, 112
DbBlockDelta, 105
DbBlockHeader, 41, 105, 109
dbconfig, 121
DbCTreeElt, 87
dbdelete, 38, 40, 41
dbexists, 38–40
dbfind, 39, 40
dbfind a, 39
dbfind next space, 39, 40
dbfind next space a, 39
dbfind next space b, 39
dbget, 38–40, 75, 86, 87
DbHConsElt, 86
dbinit, 37, 40, 122
dbinit a, 40
dbkeyiter, 38, 41
dbput, 38–40, 87

DbTx, 80, 112
DbTxSignatures, 80, 112
dbtype, 37, 38
dbtypekeyiter, 38, 41
de Bruijn criterion, 43
decode signature, 25
defrag, 39, 40
del from cache, 39
deleted, 37–41
deletedtable, 40, 41
deltatime, 100, 102, 106
dev, 7, 8, 14, 15, 23, 44, 67, 77, 81
difficulty, 124
directory

.qeditas, 9, 11, 121
archived, 41
blacklist, 41
db, 121
src/unittests, 14, 15, 23, 44, 67,

77, 81
testnet, 11, 121

do command, 123
doc, 51, 70
doc creates neg props, 54, 74
doc creates objs, 53, 74
doc creates props, 54, 74
doc hashroot, 52
doc uses objs, 53, 73
doc uses props, 53, 73
DocConj, 51, 66
DocDef, 51, 53, 66, 76
docitem, 51
docitem hashroot, 52
DocKnown, 51, 53, 66
DocParam, 51, 53, 66
DocPfOf, 51, 54, 66, 76
DocPublication, 70, 76, 90, 91, 97
DocSigna, 51, 66
document, 51
document item, 51
dumpblocktreestate, 113
dumpstate, 125

earlyblocktreenodes, 109
eea, 23
End of file, 33, 123

INDEX 131

EndP2pkhToP2pkhSignat, 28
EndP2pkhToP2shSignat, 28
EndP2shToP2pkhSignat, 28
EndP2shToP2shSignat, 28
eq node, 108
era, 11
eval script, 27
eval script if, 27
evenp, 23
exception

BannedPeer, 35
BetaLimit, 60, 61, 64
CheckingFailure, 61, 63, 64
End of file, 33, 123
Exit, 123
Failure, 34
GettingRemoteData, 31, 76, 86, 87
HeaderNoStakedAsset, 101
HeaderStakedAssetNotMin, 101
IllformedMsg, 31
InappropriatePostor, 97
NonNormalTerm, 60, 64
Not found, 31, 35, 38–40, 55
NotKnown, 64
NotSupported, 88, 92
ProtocolViolation, 33
RequestRejected, 31
SelfConnection, 33
StakingProblemPause, 120
TermLimit, 60, 61, 64
Unix error, 33
UnknownSigna, 64, 65
UnknownTerm, 64

executable
qeditas, 121
qeditascli, 10
qeditasd, 10

Exit, 123
exit, 123
exitfn, 121
extr propofpf, 63
extr tpoftm, 62

factor inputs ctree cgraft, 94
factor tx ctree cgraft, 94
Failure, 34

fake blockheader, 99
fallbacknodes, 34
false, 12, 20, 21, 28, 38, 39, 84, 93, 94,

112
field

addrfrom, 32
banned, 32, 33, 111
blockdelta stxl, 103, 104
blocksignat, 100
blocksignatendorsement, 100
blocksignatfcomp, 100
blocksignatrecid, 100
connmutex, 32
conntime, 32
deltatime, 100, 102, 106
first full height, 32
first header height, 32
forfeiture, 103
handshakestep, 32, 33
invreq, 32
last height, 32
lastmsgtm, 32
newledgerroot, 100, 105
newsignaroot, 55, 99
newsignatroot, 105
newtheoryroot, 55, 99, 105
peertimeskew, 32
pending, 32, 33
prevblockhash, 99, 102, 106
previousblockhash, 101
prevledger, 100, 101, 103, 106
prevledgergraft, 103, 104
protvers, 32
realaddr, 32
rinv, 32, 111
sendqueue, 32, 33, 35
sendqueuenonempty, 32, 33
sentinv, 32, 111
stakeaddr, 100, 101
stakeassetid, 100, 101
stakeid, 101
stakeoutput, 103, 104
stored, 100, 101
timestamp, 100–102
tinfo, 100–102, 106
useragent, 32

132 INDEX

file
.lock, 121
/dev/random, 9, 12, 16
assetsunittests.ml, 67
basicunittests.ml, 14, 15, 23
blocktree.ml, 10, 107
blocktree.mli, 107
commands.ml, 115
commands.mli, 115
config.ml, 9
config.mli, 9
configure, 9
CTrees.v, 88
ctreunittests.ml, 81
data, 38–40
deleted, 37–41
index, 37–40
log, 11, 122
mathdata.ml, 43
mathunittests.ml, 44
net.ml, 29
net.mli, 29
peers, 34
qeditas.conf, 10, 121
qeditas.ml, 12, 33, 119, 121
recover key, 100
ser.ml, 13
ser.mli, 13
setconfig.mli, 10
testpubs1.ml, 44
testpubs2.ml, 44
txpool, 116
txunittests.ml, 77
unittestsaux.ml, 44
utils.ml, 11
utils.mli, 11
wallet, 116

find and send requestdata, 35, 108
find best validated block, 110
find best validated block from, 109, 110
find in deleted, 38
find in index, 38
first full height, 32
first header height, 32
forfeiture, 103
free, 59

free in tm p, 59
free tpvar in tm p, 59
free tpvar in tp p, 59
frombase58, 24
full needed, 93
function

add, 23
add to cache, 39
add vout, 72
addknownpeer, 34
addp, 24
addr bitseq, 20
addr qedaddrstr, 25
asset value, 72
asset value sum, 72
assetbday, 71
assetid, 71, 76, 117
assetobl, 71
assetpre, 71
bannode, 123
banpeer, 35
base58, 24
big int hashval, 18
big int md256, 16
big int sub int32, 15
bitseq addr, 20
blockchain headers, 105
blockheader stakeasset, 101
blockheader succ, 101
broadcast inv, 35
broadcast requestdata, 35
btcaddrstr addr, 25
btctoqedaddr, 117
cgraft valid, 94
check bhl, 102
check doc, 66, 90
check doc rec, 66
check hit, 98, 101
check hit a, 99, 101
check hit b, 98, 99
check move obligation, 79
check p2sh, 27
check poforfeit, 102
check poforfeit a, 102
check polyprop, 62
check postor pdoc, 98, 99

INDEX 133

check postor pdoc r, 97, 98
check postor tm, 98, 99
check postor tm r, 97, 98
check prop, 62
check propofpf, 63
check ptp, 61
check signaspec, 65, 66, 90
check signaspec rec, 65
check spend obligation, 79
check theoryspec, 64, 90
check tp, 61
check tpoftm, 62
check tx in signatures, 77, 79
check tx out signatures, 79
checkmultisig, 27
checksig, 27
clearbanned, 35, 123
closelog, 11
coinage, 83, 99
coinstake, 103
compute staking chances, 119, 120
connlistener, 33
connsender, 33
count deleted, 39
count index, 39
count obj rights, 75, 89
count prop rights, 75, 89
count rights used, 75, 89
createsplitlocktx, 117, 124
ctree addr, 85
ctree cgraft, 94
ctree element a, 87
ctree element p, 87
ctree hashroot, 85
ctree lookup asset, 85, 92
ctree lookup input assets, 88, 92
ctree of block, 103, 105
ctree rights balanced, 89
ctree super element a, 87
ctree super element p, 87
ctree supports tx, 88, 92
ctree supports tx 2, 77, 88, 92
cumul stake, 99
curve y, 24
datadir from command line, 10
dbconfig, 121

dbdelete, 38, 40, 41
dbexists, 38–40
dbfind, 39, 40
dbfind a, 39
dbfind next space, 39, 40
dbfind next space a, 39
dbfind next space b, 39
dbget, 38–40, 75, 86, 87
dbinit, 37, 40, 122
dbinit a, 40
dbkeyiter, 38, 41
dbput, 38–40, 87
decode signature, 25
defrag, 39, 40
del from cache, 39
do command, 123
doc creates neg props, 54, 74
doc creates objs, 53, 74
doc creates props, 54, 74
doc hashroot, 52
doc uses objs, 53, 73
doc uses props, 53, 73
docitem hashroot, 52
dumpblocktreestate, 113
eea, 23
eq node, 108
era, 11
eval script, 27
eval script if, 27
evenp, 23
extr propofpf, 63
extr tpoftm, 62
factor inputs ctree cgraft, 94
factor tx ctree cgraft, 94
find and send requestdata, 35, 108
find best validated block, 110
find best validated block from, 109,

110
find in deleted, 38
find in index, 38
free in tm p, 59
free tpvar in tm p, 59
free tpvar in tp p, 59
frombase58, 24
full needed, 93
get asset, 75

134 INDEX

get hcons element, 86
get hlist element, 86
get nehlist element, 86
get spent, 72
get tx supporting octree, 93
get txl supporting octree, 93
getcurrmd256, 16
getknownpeers, 34
getsig, 78
handle msg, 33
hash160, 17, 31
hash160 bytelist, 27
hash addr asset, 71
hash addr assetid, 71
hash addr preasset, 71
hash blockheaderdata, 101
hashaddr, 21
hashasset, 71, 76, 83, 117
hashbitseq, 18
hashdoc, 52
hashfold, 18
hashint32, 18
hashint64, 18
hashlist, 18
hashobligation, 71
hashopair, 18, 19
hashopair1, 19
hashopair2, 19, 55
hashpair, 18
hashpayaddr, 21
hashpdoc, 52
hashpf, 47
hashpreasset, 71
hashpubaddr, 21
hashpubkey, 18
hashpubkeyc, 18
hashsigna, 51, 55
hashtag, 18
hashtermaddr, 21
hashtheory, 49, 55
hashtm, 46
hashtp, 45, 52
hashtx, 78
hashval big int, 17, 25
hashval bitseq, 17
hashval btcaddrstr, 24

hashval from addrstr, 24
hashval hexstring, 17
hashval p2pkh addr, 20
hashval p2pkh payaddr, 20
hashval p2sh addr, 20
hashval p2sh payaddr, 20
hashval pub addr, 20
hashval rev, 17
hashval term addr, 20
hexstring hashval, 17
hexstring md, 17
hexstring md256, 16
hexsubstring int32, 15
hitval, 96
hlist full approx, 89
hlist hashroot, 84
hlist lookup obj owner, 91
hlist lookup prop owner, 91
htree create, 22
htree insert, 22
htree lookup, 22, 55
import signatures, 55, 64
importbtcprivkey, 117
importendorsement, 117
importprivkey, 117
importwatchaddr, 117
importwatchbtcaddr, 117
in hlist, 84
in nehlist, 84, 88
incrstake, 97
index, 39
init headers, 109
initblocktree, 109, 122
initialize, 12, 121
initialize random seed, 12
initnetwork, 121, 122
int32 big int bits, 15
int32 hexstring, 15
int32 rev, 16
int of msgtype, 31
inv of msgtype, 31
is recent staker, 110
known p, 66
ledgerroot of blockchain, 105
load deleted, 39
load deleted to hashtable, 39

INDEX 135

load index, 38, 39
load index to hashtable, 38
load txpool, 116, 122
load wallet, 116, 122
loadknownpeers, 34
lookup sigtree, 110
lookup thytree, 110
maxblockdeltasize, 11, 31
md256 big int, 16
md256 hexstring, 16
md hexstring, 17
msgtype of int, 31
mul, 23
nehlist hashroot, 84
nehlist hlist, 84
netlistener, 33, 122
netseeker, 34, 122
netseeker loop, 34, 122
network time, 35
new assets, 71, 72
no dups, 78
node blockheight, 108
node children ref, 108
node cumulstk, 108
node ledgerroot, 108
node prevblockhash, 108
node recent stakers, 108
node signaroot, 108
node targetinfo, 108
node theoryroot, 108
node timestamp, 108
node validationstatus, 108
obj rights mentioned, 75, 89
octree hashroot, 85
octree lub, 85
ohashlist, 18, 83
ohtree hashroot, 22
openlistener, 33
openlog, 11, 122
ostree hashroot, 55
ostree insert, 55
ostree lookup, 55
ottree hashroot, 55
ottree insert, 55
ottree lookup, 55
out cost, 75, 105

output creates neg props, 54, 74, 77
output creates objs, 53, 73, 77
output creates props, 54, 74, 77
output doc uses objs, 53, 73
output doc uses props, 53, 73
output signaspec uses objs, 52, 72,

88
output signaspec uses props, 53, 73,

88
p2pkhaddr addr, 21
p2pkhaddr p, 21
p2pkhaddr payaddr, 21
p2shaddr addr, 21
p2shaddr p, 21
p2shaddr payaddr, 21
payaddr addr, 21
payaddr p, 21
pdoc hashroot, 52
peeraddr, 34
pf hashroot, 47
pow, 23
preasset value, 72
print best node, 110
print ctree, 85
print ctree all, 85
print hlist, 84
print hlist to buffer, 84
printasset, 117, 124
printassets, 116
printassets in ledger, 116
printctreeelt, 116, 124
printctreeinfo, 116, 124
printhashval, 17
printhconselt, 116, 124
printtx, 117, 124
privkey from btcwif, 24
privkey from wif, 24
process config args, 10
process config file, 10
process new header, 108
process new header a, 108
process new header aa, 108
process new header ab, 108, 111
process new header b, 108
prop rights mentioned, 75, 89
pubaddr addr, 21

136 INDEX

pubaddr p, 21
pubkey hashval, 24, 26
publish block, 110
publish stx, 110
qedaddrstr addr, 25
qedwif, 24
queue msg, 35
queue reply, 35
rand 256, 12, 16
rand bit, 12
rand int32, 12
rand int64, 12
Random.full init, 12
rec msg, 31, 33
record recent staker, 110
recover key, 26
remove assets, 72
remove dead conns, 33
removeknownpeer, 34
req header batches, 111
reset resource limits, 60
retarget, 96, 97
reward locktime, 104
rewfn, 11, 103–105
rights mentioned, 75
rights out obj, 74, 89
rights out prop, 75, 89
ripemd160 md256, 17
save ctree elements, 87
save ctree elements a, 87
save hlist elements, 86
save nehlist elements, 86
save wallet, 116
saveknownpeers, 34, 121
savetxtopool, 117, 124
seic, 13
seis, 13
send inv, 34, 110
send msg, 31
sendtx, 117, 124
seoc, 13, 14
seocf, 13
seosb, 13, 14
seosbf, 13
serialization
sei addr, 21

sei addr asset, 71
sei addr assetid, 71
sei addr preasset, 71
sei asset, 71
sei block, 103
sei blockdelta, 103
sei blockheader, 99
sei cgraft, 94
sei ctree, 85
sei doc, 52
sei gensignat, 28
sei hashval, 18
sei hlist, 83
sei int8, 13
sei list, 13, 14
sei md256, 16
sei nehlist, 84
sei obligation, 71
sei payaddr, 21
sei pdoc, 52
sei pf, 47
sei postor, 97
sei preasset, 71
sei pt, 24
sei pubaddr, 22
sei signa, 50
sei signaspec, 50
sei signat, 25
sei stakemod, 95
sei stx, 78
sei termaddr, 22
sei theory, 49
sei theoryspec, 49
sei tm, 46
sei tp, 45
sei tx, 78
sei txsigs, 78
sei varint, 13
sei varintb, 13
seo addr, 21
seo addr asset, 71
seo addr assetid, 71
seo addr preasset, 71
seo asset, 71
seo block, 103
seo blockdelta, 103

INDEX 137

seo blockheader, 99
seo cgraft, 94
seo ctree, 85
seo doc, 52
seo gensignat, 28
seo hashval, 18
seo hlist, 83
seo int8, 13
seo list, 13, 14
seo md256, 16
seo nehlist, 84
seo obligation, 71
seo payaddr, 21
seo pdoc, 52
seo pf, 47
seo postor, 97
seo preasset, 71
seo pt, 24
seo pubaddr, 22
seo signa, 50
seo signaspec, 50
seo signat, 25
seo stakemod, 95
seo stx, 78
seo termaddr, 21
seo theory, 49
seo theoryspec, 49
seo tm, 46
seo tp, 45
seo tx, 78
seo txsigs, 78
seo varint, 13
seo varintb, 13

set genesis stakemods, 95, 122
sha256init, 16
sha256round, 16, 18
sha256str, 16
signa uses objs, 53
signaspec burncost, 51
signaspec knowns, 50
signaspec signa, 50, 51
signaspec signas, 50
signaspec trms, 50
signaspec uses objs, 52, 73
signaspec uses objs aux, 52
signaspec uses props, 53, 73

signaspec uses props aux, 53
signat big int, 25
signat hashval, 25
signtx, 117, 124
smulp, 24
stakemod firstbit, 96
stakemod lastbit, 96
stakemod pushbit, 96
stakingthread, 119, 121
string of msgtype, 31
strip bitseq false, 93
strip bitseq false0, 94
strip bitseq true, 93
strip bitseq true0, 93
strong rand 256, 12, 16
super element to element, 87
super element to element a, 87
termaddr addr, 21
termaddr p, 21
theoryspec burncost, 49
theoryspec hashedaxioms, 49
theoryspec primtps, 49
theoryspec theory, 49
tm beta eta delta norm, 63
tm beta eta norm, 60
tm beta eta norm 1, 60
tm delta norm, 63
tm hashroot, 45–47
tm norm p, 60
tm tp p, 65
tmshift, 57
tmsubst, 59
tmtpshift, 57
tmtpsubst, 58
tp of prim, 61
tpshift, 57
tpsubst, 58
tryconnectpeer, 34
tx inputs, 78
tx inputs valid, 79
tx octree trans, 93
tx of block, 103
tx outputs, 78
tx outputs valid, 79, 104
tx outputs valid addr cats, 79, 90
tx outputs valid one owner, 79

138 INDEX

tx signatures valid, 79, 80
tx signatures valid asof blkh, 80
tx valid, 79
txl octree trans, 93
txl of block, 103, 105
txout update ostree, 80
txout update ottree, 80
undelete, 39, 40
units sent to addr, 75
update bestnode, 109, 110
valid block, 104, 105
valid block a, 104
valid blockchain, 105, 106
valid blockheader, 101
valid blockheader a, 101
valid blockheader allbutsignat, 101
valid blockheader signat, 101
valid blockheaderchain, 106
validate block of node, 112
verify gensignat, 28
verify p2pkhaddr signat, 26
verify p2sh, 27, 28
verify signed big int, 26
verifybitcoinmessage, 26
verifybitcoinmessage recover, 26
verifymessage, 26
verifymessage recover, 26
withlock, 40

genesisblocktreenode, 108, 109
genesisccurrentstakemod, 106
genesiscurrentstakemod, 95
genesisfuturestakemod, 95, 106
genesisledgerroot, 105, 106
genesistarget, 96, 106, 122
gensignat, 27, 78
gensignat or ref, 78
get asset, 75, 76
get ctree element, 87
get hcons element, 86
get hlist element, 86
get nehlist element, 86
get spent, 72
get tx supporting octree, 93
get txl supporting octree, 93
GetAddr, 30

GetAsset, 30
GetBlock, 30
GetBlockdelta, 30, 111
GetBlockdeltah, 30
GetCheckpoint, 31, 112
GetCTreeElement, 30
getcurrmd256, 16
GetData, 29
GetHConsElement, 30
GetHeader, 29, 111
GetHeaders, 30, 111
getknownpeers, 34
getpeerinfo, 123
getsig, 78
GetSTx, 29
GettingRemoteData, 31, 76, 86, 87
GetTx, 29, 31, 112
GetTxSignatures, 29, 112
global signature, 50
gsigna, 50
gvkn, 66, 90, 91
gvtp, 65, 90, 91

handle msg, 33
handshakestep, 32, 33
hash, 15, 17
hash root, 46, 48
hash160, 17, 31
hash160 bytelist, 27
hash addr asset, 71
hash addr assetid, 71
hash addr preasset, 71
hash blockheaderdata, 101
hashaddr, 21
hashasset, 71, 76, 83, 117
hashaux, 15
hashbitseq, 18
hashdoc, 52
hashfold, 18
hashint32, 18
hashint64, 18
hashlist, 18
hashobligation, 71
hashopair, 18, 19
hashopair1, 19
hashopair2, 19, 55

INDEX 139

hashpair, 18
hashpayaddr, 21
hashpdoc, 52
hashpf, 47
hashpreasset, 71
hashpubaddr, 21
hashpubkey, 18
hashpubkeyc, 18
hashsigna, 51, 55
hashtag, 18
hashtermaddr, 21
hashtheory, 49, 55
hashtm, 46
hashtp, 45, 52
hashtx, 78
hashval, 17
hashval big int, 17, 25
hashval bitseq, 17
hashval btcaddrstr, 24
hashval from addrstr, 24
hashval hexstring, 17
hashval p2pkh addr, 20
hashval p2pkh payaddr, 20
hashval p2sh addr, 20
hashval p2sh payaddr, 20
hashval pub addr, 20
hashval rev, 17
hashval term addr, 20
HCons, 83, 84
HConsElement, 30
HConsH, 83, 84, 86
HeaderNoStakedAsset, 101
Headers, 30, 111
HeaderStakedAssetNotMin, 101
held at α in C, 88
hexstring hashval, 17
hexstring md, 17
hexstring md256, 16
hexsubstring int32, 15
HHash, 83–86
hit value, 96
hitval, 96
hlist, 83
hlist, 81, 83, 86
hlist full approx, 89
hlist hashroot, 84

hlist lookup obj owner, 91
hlist lookup prop owner, 91
HNil, 83, 84, 86
holds, 68
htree, 15, 22, 54
htree create, 22
htree insert, 22
htree lookup, 22, 55
hypothesis context, 63

IllformedMsg, 31
Imp, 46
import signatures, 55, 64
importbtcprivkey, 117, 123
imported, 64
importendorsement, 117, 123
importprivkey, 117, 123
importwatchaddr, 117, 123
importwatchbtcaddr, 117, 123
in hlist, 84
in nehlist, 84, 88
InappropriatePostor, 97
incrstake, 97
index, 39
index, 37–40
indextable, 40, 41
init headers, 109
initblocktree, 109, 122
initdistr, 8
initialize, 12, 121
initialize random seed, 12
initnetwork, 121, 122
int32 big int bits, 15
int32 hexstring, 15
int32 rev, 16
int of msgtype, 31
intention to publish, 70
intention minage, 70, 90
Inv, 29, 35, 110
inv of msgtype, 31
InvalidBlock, 107
invreq, 32
ip, 9, 122
ipv6, 9
is recent staker, 110

140 INDEX

known p, 66
knownpeers, 34

Lam, 46
last height, 32
lastcheckpoint, 9
lastcheckpointnode, 109, 110
lastmsgtm, 32
ledgerroot of blockchain, 105
LedgerStates, 81
listbanned, 123
load deleted, 39
load deleted to hashtable, 39
load index, 38, 39
load index to hashtable, 38
load txpool, 116, 122
load wallet, 116, 122
loadknownpeers, 34
locally bound for i, 56
locked maturation, 82
log, 11
log, 11, 122
lookup sigtree, 110
lookup thytree, 110

Marker, 70, 90, 91
marker address, 90
master, 7, 8, 14, 15, 23, 44, 67, 77, 81
MathData, 44
mathdata, 22, 43, 44, 63
mathdata.ml, 43
mathunittests.ml, 44
mature, 82
max target, 97, 99, 122
maxblockdeltasize, 11, 31
maxconns, 9, 33
maximum age, 82, 83
maximum age sqr, 82
md, 17
md256, 16, 18
md256 big int, 16
md256 hexstring, 16
md hexstring, 17
Mempool, 30
MNotFound, 29
module

assets, 34, 41, 52–54, 67, 71
block, 11, 41, 78, 95
blocktree, 34, 107, 110, 116, 122,

124
commands, 115, 119, 122–124
config, 9, 121, 122
cryptocurr, 23, 24
ctre, 34, 41, 77, 81, 94
ctregraft, 81, 94
ctregrafting, 94
db, 37
DbArchived, 41
DbAsset, 75, 86
Dbbasic, 37–39, 41
Dbbasic2, 37, 38, 40, 41, 75, 80,

86, 87, 105
Dbbasic2keyiter, 41, 105
DbBlacklist, 41, 112
DbBlockDelta, 105
DbBlockHeader, 41, 105, 109
DbCTreeElt, 87
DbHConsElt, 86
DbTx, 80, 112
DbTxSignatures, 80, 112
hash, 15, 17
hashaux, 15
htree, 15, 22, 54
mathdata, 22, 43, 44, 63
net, 11, 12, 29, 31, 122, 123
ripemd160, 15, 17
script, 19, 23, 27, 115
secp256k1, 23
ser, 13, 14
setconfig, 9, 122
sha256, 12, 15, 16
sigant, 115
signat, 19, 23, 25, 26, 100
tx, 41, 67, 77, 78
utils, 11, 16

Module type
dbtype, 37, 38
dbtypekeyiter, 38, 41

msgtype, 29, 31
msgtype handler, 34, 110
msgtype of int, 31
mtree, 81

INDEX 141

MTrees, 81
mul, 23
mutexdb, 40

NehCons, 84
NehConsH, 84, 86
NehHash, 84, 86, 87
nehlist, 81, 83, 86
nehlist hashroot, 84
nehlist hlist, 84
net, 11, 12, 29, 31, 122, 123
net.ml, 29
net.mli, 29
netblkh, 31, 109
netconns, 33, 34
netlistener, 33, 122
netlistenerth, 33
netseeker, 34, 122
netseeker loop, 34, 122
netseekerth, 34
nettime, 123
network time, 35
new assets, 71, 72
NewHeader, 30
newledgerroot, 100, 105
newsignaroot, 55, 99
newsignatroot, 105
newtheoryroot, 55, 99, 105
NextStake, 119
nextstakechances, 119
nextstakeinfo, 119
no dups, 78
node blockheight, 108
node children ref, 108
node cumulstk, 108
node ledgerroot, 108
node prevblockhash, 108
node recent stakers, 108
node signaroot, 108
node targetinfo, 108
node theoryroot, 108
node timestamp, 108
node validationstatus, 108
None, 22, 23, 33, 34, 49, 50, 55, 65, 69–

72, 79, 80, 84–86, 89, 91, 99,
100, 104–108, 110

NonNormalTerm, 60, 64
normal, 60
NoStakeUpTo, 119
Not found, 31, 35, 38–40, 55
NotKnown, 64
NotSupported, 88, 92

obj rights mentioned, 75, 89
obligation, 67, 68
octree hashroot, 85
octree lub, 85
ohashlist, 18, 83
ohtree hashroot, 22
openlistener, 33
openlog, 11, 122
orphanblkheaders, 108
ostree hashroot, 55
ostree insert, 55
ostree lookup, 55
ottree hashroot, 55
ottree insert, 55
ottree lookup, 55
out cost, 75, 105
output creates neg props, 54, 74, 77
output creates objs, 53, 73, 77
output creates props, 54, 74, 77
output doc uses objs, 53, 73
output doc uses props, 53, 73
output signaspec uses objs, 52, 72, 88
output signaspec uses props, 53, 73, 88
OwnsNegProp, 54, 69, 77, 91, 92
OwnsObj, 69, 77, 90–92
OwnsProp, 69, 77, 90–92

p2pkh addresses, 19
p2pkhaddr, 19, 20, 26
p2pkhaddr addr, 21
p2pkhaddr p, 21
p2pkhaddr payaddr, 21
P2pkhSignat, 27
p2sh addresses, 19
p2shaddr, 19, 20, 27
p2shaddr addr, 21
p2shaddr p, 21
p2shaddr payaddr, 21
P2shSignat, 28

142 INDEX

partial documents, 52
pay addresses, 20
payaddr, 20
payaddr addr, 21
payaddr p, 21
pdoc, 52, 97
pdoc hashroot, 52
peeraddr, 34
peers, 34
peertimeskew, 32
pending, 32, 33
pf, 47
pf hashroot, 47
Ping, 30
poforfeit, 102
polymorphic proposition, 62
Pong, 30
port, 9
postor, 97, 100
PostorDoc, 97, 98
PostorTrm, 97, 98
pow, 23
preasset, 68
preasset, 67, 68
preasset value, 72
prevblockhash, 99, 102, 106
previousblockhash, 101
prevledger, 100, 101, 103, 106
prevledgergraft, 103, 104
Prim, 46
print best node, 110
print ctree, 85
print ctree all, 85
print hlist, 84
print hlist to buffer, 84
printasset, 117, 124
printassets, 116, 123
printassets in ledger, 116
printctreeelt, 116, 124
printctreeinfo, 116, 124
printhashval, 17
printhconselt, 116, 124
printtx, 117, 124
privkey from btcwif, 24
privkey from wif, 24
process config args, 10

process config file, 10
process new header, 108
process new header a, 108
process new header aa, 108
process new header ab, 108, 111
process new header b, 108
prompt, 123
Prop, 44
prop rights mentioned, 75, 89
proposition, 62
ProtocolViolation, 33
protvers, 32
pt, 23
pubaddr, 19, 20
pubaddr addr, 21
pubaddr p, 21
pubkey hashval, 24, 26
publication addresses, 19
publish block, 110
publish stx, 110
published stx, 110

qedaddrstr addr, 25
qeditas, 121
qeditas.conf, 10, 121
qeditas.ml, 12, 33, 119, 121
qeditascli, 10
qeditasd, 10
qedwif, 24
queue msg, 35
queue reply, 35

rand 256, 12, 16
rand bit, 12
rand int32, 12
rand int64, 12
Random.full init, 12
random initialized, 12
randomseed, 9, 12
realaddr, 32
rec msg, 31, 33
record recent staker, 110
recover key, 26
recover key, 100
redexes, 59
reducts, 59

INDEX 143

Reject, 30
remove assets, 72
remove dead conns, 33
removeknownpeer, 34
req header batches, 111
RequestRejected, 31
reset resource limits, 60
retarget, 96, 97
reward locktime, 83, 104
reward maturation, 82
rewfn, 11, 103–105
rights mentioned, 75
rights out obj, 74, 89
rights out prop, 75, 89
RightsObj, 69, 75, 89
RightsProp, 70, 75, 89
rinv, 32, 111
ripemd160, 15, 17
ripemd160 md256, 17

save ctree elements, 87
save ctree elements a, 87
save hlist elements, 86
save nehlist elements, 86
save wallet, 116
saveknownpeers, 34, 121
savetxtopool, 117, 124
scope, 45
script, 19, 23, 27, 115
secp256k1, 23
seed, 9, 122
sei addr, 21
sei addr asset, 71
sei addr assetid, 71
sei addr preasset, 71
sei asset, 71
sei block, 103
sei blockdelta, 103
sei blockheader, 99
sei cgraft, 94
sei ctree, 85
sei doc, 52
sei gensignat, 28
sei hashval, 18
sei hlist, 83
sei int8, 13

sei list, 13, 14
sei md256, 16
sei nehlist, 84
sei obligation, 71
sei payaddr, 21
sei pdoc, 52
sei pf, 47
sei postor, 97
sei preasset, 71
sei pt, 24
sei pubaddr, 22
sei signa, 50
sei signaspec, 50
sei signat, 25
sei stakemod, 95
sei stx, 78
sei termaddr, 22
sei theory, 49
sei theoryspec, 49
sei tm, 46
sei tp, 45
sei tx, 78
sei txsigs, 78
sei varint, 13
sei varintb, 13
seic, 13
seict, 13
seis, 13
seist, 13
SelfConnection, 33
send inv, 34, 110
send inv fn, 34, 110
send msg, 31
sendqueue, 32, 33, 35
sendqueuenonempty, 32, 33
sendtx, 117, 124
sentinv, 32, 111
seo addr, 21
seo addr asset, 71
seo addr assetid, 71
seo addr preasset, 71
seo asset, 71
seo block, 103
seo blockdelta, 103
seo blockheader, 99
seo cgraft, 94

144 INDEX

seo ctree, 85
seo doc, 52
seo gensignat, 28
seo hashval, 18
seo hlist, 83
seo int8, 13
seo list, 13, 14
seo md256, 16
seo nehlist, 84
seo obligation, 71
seo payaddr, 21
seo pdoc, 52
seo pf, 47
seo postor, 97
seo preasset, 71
seo pt, 24
seo pubaddr, 22
seo signa, 50
seo signaspec, 50
seo signat, 25
seo stakemod, 95
seo stx, 78
seo termaddr, 21
seo theory, 49
seo theoryspec, 49
seo tm, 46
seo tp, 45
seo tx, 78
seo txsigs, 78
seo varint, 13
seo varintb, 13
seoc, 13, 14
seocf, 13
seosb, 13, 14
seosbf, 13
seosbt, 13
seosct, 13
ser, 13, 14
ser.ml, 13
ser.mli, 13
serialization function

sei addr, 21
sei addr asset, 71
sei addr assetid, 71
sei addr preasset, 71
sei asset, 71

sei block, 103
sei blockdelta, 103
sei blockheader, 99
sei cgraft, 94
sei ctree, 85
sei doc, 52
sei gensignat, 28
sei hashval, 18
sei hlist, 83
sei int8, 13
sei list, 13, 14
sei md256, 16
sei nehlist, 84
sei obligation, 71
sei payaddr, 21
sei pdoc, 52
sei pf, 47
sei postor, 97
sei preasset, 71
sei pt, 24
sei pubaddr, 22
sei signa, 50
sei signaspec, 50
sei signat, 25
sei stakemod, 95
sei stx, 78
sei termaddr, 22
sei theory, 49
sei theoryspec, 49
sei tm, 46
sei tp, 45
sei tx, 78
sei txsigs, 78
sei varint, 13
sei varintb, 13
seo addr, 21
seo addr asset, 71
seo addr assetid, 71
seo addr preasset, 71
seo asset, 71
seo block, 103
seo blockdelta, 103
seo blockheader, 99
seo cgraft, 94
seo ctree, 85
seo doc, 52

INDEX 145

seo gensignat, 28
seo hashval, 18
seo hlist, 83
seo int8, 13
seo list, 13, 14
seo md256, 16
seo nehlist, 84
seo obligation, 71
seo payaddr, 21
seo pdoc, 52
seo pf, 47
seo postor, 97
seo preasset, 71
seo pt, 24
seo pubaddr, 22
seo signa, 50
seo signaspec, 50
seo signat, 25
seo stakemod, 95
seo stx, 78
seo termaddr, 21
seo theory, 49
seo theoryspec, 49
seo tm, 46
seo tp, 45
seo tx, 78
seo txsigs, 78
seo varint, 13
seo varintb, 13

set genesis stakemods, 95, 122
setconfig, 9, 122
setconfig.mli, 10
sha256, 12, 15, 16
sha256init, 16
sha256round, 16, 18
sha256str, 16
sigant, 115
sigitem, 50
signa, 50, 54
signa uses objs, 53
SignaDef, 50, 65
signaitem, 50
SignaKnown, 50, 53, 65
SignaParam, 50, 52, 65
SignaPublication, 70, 90, 91
SignaSigna, 50, 65, 66

signaspec, 50, 70
signaspec burncost, 51
signaspec knowns, 50
signaspec signa, 50, 51
signaspec signas, 50
signaspec trms, 50
signaspec uses objs, 52, 73
signaspec uses objs aux, 52
signaspec uses props, 53, 73
signaspec uses props aux, 53
signat, 19, 23, 25, 26, 100
signat big int, 25
signat hashval, 25
signature, 50
signature item, 49, 50
signature root, 55
signature specification, 50
signtx, 117, 124
sigtree, 110
smulp, 24
socks, 9
src/unittests, 14, 15, 23, 44, 67, 77,

81
stake modifier, 95
stakeaddr, 100, 101
stakeassetid, 100, 101
stakeid, 101
stakemod, 95
stakemod firstbit, 96
stakemod lastbit, 96
stakemod pushbit, 96
stakeoutput, 103, 104
staking, 9, 119, 121
stakingassets, 116, 119
StakingProblemPause, 120
stakingthread, 119, 121
statefun, 81
storagedocassets, 116
storagetrmassets, 116
stored, 100, 101
stree, 51, 54, 55, 80, 88, 92, 99, 108,

110
string of msgtype, 31
strip bitseq false, 93
strip bitseq false0, 94
strip bitseq true, 93

146 INDEX

strip bitseq true0, 93
strong rand 256, 12, 16
STx, 30
sTx, 77
stx, 67, 77, 78, 80
stxpool, 110, 112
super element to element, 87
super element to element a, 87
support, 77, 87
supports, 77

targetinfo, 96, 99
term addresses, 19
term context, 61
term level β-redex, 59
term level η-redex, 60
term count, 60
termaddr, 19, 20
termaddr addr, 21
termaddr p, 21
TermLimit, 60, 61, 64
testing, 7, 8, 14, 15, 23, 44, 67, 77, 81
testnet, 9, 121, 122
testnet, 11, 121
testnetfallbacknodes, 34
testpubs1.ml, 44
testpubs2.ml, 44
theory, 48
theory, 49, 54
theory item, 48
theory root, 55
theory specification, 48
theoryitem, 49
TheoryPublication, 70, 90, 91
theoryspec, 49, 70
theoryspec burncost, 49
theoryspec hashedaxioms, 49
theoryspec primtps, 49
theoryspec theory, 49
this nodes nonce, 12, 33, 122
ThyAxiom, 49, 65
ThyDef, 49, 65
ThyPrim, 49, 65
thytree, 110
timestamp, 100–102
tinfo, 100–102, 106

tm, 45
tm beta eta delta norm, 63
tm beta eta norm, 60
tm beta eta norm 1, 60
tm delta norm, 63
tm hashroot, 45–47
tm norm p, 60
tm tp p, 65
TmH, 46, 97
tmshift, 57
tmsubst, 59
tmtpshift, 57
tmtpsubst, 58
tovalidate, 109, 111
tp, 44
tp of prim, 61
TpAll, 45
tpshift, 57
tpsubst, 58
TpVar, 44
transaction id, 78
Transactions, 77
true, 20, 21, 27, 33, 38, 39, 93, 111,

119, 121
tryconnectpeer, 34
TTpAll, 46
TTpAp, 46
TTpLam, 46
ttree, 49, 54, 55, 80, 88, 92, 99, 108,

110
Tx, 30, 31, 77, 112
tx, 41, 67, 77, 78, 112
tx inputs, 78
tx inputs valid, 79
tx octree trans, 93
tx of block, 103
tx outputs, 78
tx outputs valid, 79, 104
tx outputs valid addr cats, 79, 90
tx outputs valid one owner, 79
tx signatures valid, 79, 80
tx signatures valid asof blkh, 80
tx valid, 79
txl octree trans, 93
txl of block, 103, 105
txout update ostree, 80

INDEX 147

txout update ottree, 80
txpool, 116
txpool, 116
TxSignatures, 30, 112
txunittests.ml, 77
type

addr, 20
addr asset, 71, 72
addr assetid, 71, 72, 77, 88, 92, 94
addr preasset, 71–77, 93
asset, 67, 70
big int, 12, 13, 16, 23, 96, 99, 108
block, 103
blockchain, 105
blockdelta, 102, 103, 111
blockheader, 99, 103
blockheaderchain, 105
blockheaderdata, 99, 101
blockheadersig, 99, 100
blocktree, 107, 119
bool, 41
cgraft, 94
connstate, 32–34, 111
ctree, 81, 84, 85, 100
ctree option, 84
doc, 51, 70
docitem, 51
gensignat, 27, 78
gensignat or ref, 78
gsigna, 50
hashval, 17
hlist, 81, 83, 86
htree, 22, 54
md, 17
md256, 16, 18
msgtype, 29, 31
nehlist, 81, 83, 86
nextstakeinfo, 119
obligation, 67, 68
p2pkhaddr, 19, 20, 26
p2shaddr, 19, 20, 27
payaddr, 20
pdoc, 52, 97
pf, 47
poforfeit, 102
postor, 97, 100

preasset, 67, 68
pt, 23
pubaddr, 19, 20
seict, 13
seist, 13
seosbt, 13
seosct, 13
sigitem, 50
signa, 50, 54
signaitem, 50
signaspec, 50, 70
signat, 25, 100
stakemod, 95
stree, 51, 54, 55, 80, 88, 92, 99,

108, 110
stx, 67, 77, 78, 80
targetinfo, 96, 99
termaddr, 19, 20
theory, 49, 54
theoryitem, 49
theoryspec, 49, 70
tm, 45
tp, 44
ttree, 49, 54, 55, 80, 88, 92, 99,

108, 110
tx, 67, 77, 112
validationstatus, 107, 108

type context, 61
type level β-redex, 60
type level η-redex, 60

undelete, 39, 40
units sent to addr, 75
unittestsaux.ml, 44
Unix error, 33
UnknownSigna, 64, 65
UnknownTerm, 64
unlocked maturation, 82
update bestnode, 109, 110
useragent, 32
utils, 11, 16
utils.ml, 11
utils.mli, 11

Valid, 112
valid, 94

148 INDEX

valid as a polymorphic type, 61
valid as a simple type, 61
valid block, 104, 105
valid block a, 104
valid blockchain, 105, 106
valid blockheader, 101
valid blockheader a, 101
valid blockheader allbutsignat, 101
valid blockheader signat, 101
valid blockheaderchain, 106
validate block of node, 112
validationstatus, 107, 108
ValidBlock, 107, 109
validity, 77
value

g, 24
n, 24
p, 23
bestnode, 119
cache1, 39
cache2, 39
deletedtable, 40, 41
EndP2pkhToP2pkhSignat, 28
EndP2pkhToP2shSignat, 28
EndP2shToP2pkhSignat, 28
EndP2shToP2shSignat, 28
false, 12, 20, 21, 28, 38, 39, 84, 93,

94, 112
imported, 64
indextable, 40, 41
log, 11
mutexdb, 40
nextstakechances, 119
None, 22, 23, 33, 34, 49, 50, 55,

65, 69–72, 79, 80, 84–86, 89,
91, 99, 100, 104–108, 110

P2pkhSignat, 27
P2shSignat, 28
stakingassets, 119
true, 20, 21, 27, 33, 38, 39, 93, 111,

119, 121
variable

bannedpeers, 35, 123
bestnode, 109, 116, 124
beta count, 60
blkheadernode, 108

checkpoints, 109, 112
checkpointskey, 10
checkpointsprivkeyk, 109
checkpointspubkeyx, 10, 109
checkpointspubkeyy, 10, 109
close to unlocked, 82
currblock, 16
currhashval, 16
datadir, 9–11
earlyblocktreenodes, 109
exitfn, 121
fake blockheader, 99
fallbacknodes, 34
genesisblocktreenode, 108, 109
genesisccurrentstakemod, 106
genesiscurrentstakemod, 95
genesisfuturestakemod, 95, 106
genesisledgerroot, 105, 106
genesistarget, 96, 106, 122
gvkn, 66, 90, 91
gvtp, 65, 90, 91
intention minage, 70, 90
ip, 9, 122
ipv6, 9
knownpeers, 34
lastcheckpoint, 9
lastcheckpointnode, 109, 110
locked maturation, 82
max target, 97, 99, 122
maxconns, 9, 33
maximum age, 82, 83
maximum age sqr, 82
msgtype handler, 34, 110
netblkh, 31, 109
netconns, 33, 34
netlistener, 33
netlistenerth, 33
netseekerth, 34
nextstakechances, 119
None, 100
orphanblkheaders, 108
port, 9
prompt, 123
published stx, 110
random initialized, 12
randomseed, 9, 12

INDEX 149

reward locktime, 83
reward maturation, 82
seed, 9, 122
send inv fn, 34, 110
sigtree, 110
socks, 9
staking, 9, 119, 121
stakingassets, 116
storagedocassets, 116
storagetrmassets, 116
stxpool, 110, 112
term count, 60
testnet, 9, 121, 122
testnetfallbacknodes, 34
this nodes nonce, 12, 33, 122
thytree, 110
tovalidate, 109, 111
txpool, 116
unlocked maturation, 82
walletendorsements, 115, 116
walletkeys, 115, 116
walletp2shs, 115, 116
walletwatchaddrs, 116

Verack, 29, 33
verify gensignat, 28
verify p2pkhaddr signat, 26
verify p2sh, 27, 28
verify signed big int, 26
verifybitcoinmessage, 26
verifybitcoinmessage recover, 26
verifymessage, 26
verifymessage recover, 26
Version, 29, 33

Waiting, 107, 111, 112
wallet, 116
walletendorsements, 115, 116
walletkeys, 115, 116
walletp2shs, 115, 116
walletwatchaddrs, 116
withlock, 40

150 INDEX

Bibliography

[1] Anonymous. The QED Manifesto. In Alan Bundy, editor, CADE, volume
814 of Lecture Notes in Computer Science, pages 238–251. Springer, 1994.

[2] H. Barendregt and F. Wiedijk. The challenge of computer mathematics.
Transactions A of the Royal Society, 363:2351–2375, 2005.

[3] Chad E. Brown. The Egal Manual, September 2014.

[4] N. G. De Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the church-rosser
theorem. INDAG. MATH, 34:381–392, 1972.

[5] Alonzo Church. A formulation of the simple theory of types. J. Symb. Log,
5(2):56–68, 1940.

[6] Mike Croteau and Emir Litranab. Proof of stake: Definite. an implemen-
tation of constant staking rewards to promote increased network activity,
August 2014.

[7] N.G. de Bruijn. A survey of the project AUTOMATH. In J.P. Seldin
and J.R. Hindley, editors, To H.B. Curry: Essays in Combinatory Logic,
Lambda Calculus and Formalism, pages 579–606. Academic Press, 1980.

[8] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. Ripemd-160: A
strengthened version of ripemd. In Dieter Gollmann, editor, FSE, volume
1039 of LNCS, pages 71–82. Springer, 1996.

[9] G. Gentzen. Untersuchungen über das logischen Schliessen. Mathematische
Zeitschrift, 39:405–431, 1936. Translation in: Collected papers of Gerhard
Gentzen, ed. M. E. Szabo, North-Holland, Amsterdam [1969], pp. 68–131.

[10] go1111111. Any coin that replaces Bitcoin will use the Bitcoin blockchain,
2013.

[11] Georges Gonthier. The four colour theorem: Engineering of a formal proof.
In Deepak Kapur, editor, Computer Mathematics, 8th Asian Symposium,
ASCM 2007, Singapore, December 15-17, 2007. Revised and Invited Papers,
volume 5081 of Lecture Notes in Computer Science, page 333. Springer,
2007.

151

152 BIBLIOGRAPHY

[12] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril
Cohen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell
O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev,
Enrico Tassi, and Laurent Théry. A machine-checked proof of the odd or-
der theorem. In Sandrine Blazy, Christine Paulin-Mohring, and David
Pichardie, editors, Interactive Theorem Proving - 4th International Con-
ference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings, volume
7998 of Lecture Notes in Computer Science, pages 163–179. Springer, 2013.

[13] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Ed-
inburgh LCF. A Mechanised Logic of Computation, volume 78 of LNCS.
Springer Verlag, 1979.

[14] Michael J. C. Gordon. Introduction to the HOL system. In Myla Archer,
Jeffrey J. Joyce, Karl N. Levitt, and Phillip J. Windley, editors, Proceed-
ings of the 1991 International Workshop on the HOL Theorem Proving
System and its Applications, August 1991, Davis, California, USA, pages
2–3. IEEE Computer Society, 1991.

[15] Thomas Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, Truong Le
Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat
Nguyen, Truong Quang Nguyen, Tobias Nipkow, Steven Obua, Joseph
Pleso, Jason Rute, Alexey Solovyev, An Hoai Thi Ta, Trung Nam Tran,
Diep Thi Trieu, Josef Urban, Ky Khac Vu, and Roland Zumkeller. A formal
proof of the Kepler conjecture, 2015.

[16] John Harrison. HOL Light: An overview. In Stefan Berghofer, Tobias
Nipkow, Christian Urban, and Makarius Wenzel, editors, Proceedings of
the 22nd International Conference on Theorem Proving in Higher Order
Logics, TPHOLs 2009, volume 5674 of Lecture Notes in Computer Science,
pages 60–66, Munich, Germany, 2009. Springer-Verlag.

[17] W.A. Howard. The formulas-as-types notion of construction. In J.P. Seldin
and J.R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 479–490, New York, 1980. Aca-
demic Press.

[18] The Coq development team. The Coq proof assistant reference manual.
LogiCal Project, 2012. Version 8.4.

[19] Ralph C. Merkle. Protocols for public key cryptosystems. In Proc. 1980
Symposium on Security and Privacy, pages 122–133. IEEE Computer So-
ciety, April 1980.

[20] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz.
Permacoin: Repurposing bitcoin work for data preservation. In 2014 IEEE
Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May
18-21, 2014, pages 475–490. IEEE Computer Society, 2014.

BIBLIOGRAPHY 153

[21] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.

[22] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL
— A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS.
Springer, 2002.

[23] NIST. FIPS 180-4: Secure Hash Standard (SHS), 2012.

[24] Ulf Norell. Dependently typed programming in agda. In In Lecture Notes
from the Summer School in Advanced Functional Programming, 2008.

[25] D. Prawitz. Natural Deduction. Almqvist & Wiksell, Stockholm, 1965.

[26] Peter R. Spin-offs: bootstrap your alt-coin with a bitcoin-blockchain-based
initial coin distribution, 2014.

[27] Certicom Research. Sec 2: Recommended elliptic curve domain parameters,
2000. Version 1.0.

[28] Piotr Rudnicki and Andrzej Trybulec. Mathematical knowledge manage-
ment in mizar. In Proc. of MKM 2001, 2001.

[29] Kazuhiko Sakaguchi. proofmarket.org.

[30] Bill White. Formal Idealizations of Cryptographic Hashing, 2015.

[31] Bill White. Qeditas: A Formal Library as a Bitcoin Spin-Off, 2015.

[32] Bill White. A Theory for Lightweight Cryptocurrency Ledgers, 2015.

